The sensorimotricité platform of Paris Descartes University is on 7th floor in Saints-Pères. It is operational since November 2007. The platform has 200 m2 local room including a large room  used to record the subjects, a waiting room, a bathroom with a WC, a doctor’s office, a researcher’s office and an engineer’s office. Our 4 partners are the CNRS, INSERM, Paris Descartes University and IFR Handicap. We have had 500 000€ since 2007 to equip the platform. A Motion Capture and Movement Analysis system is available in the platform. It includes 6 units of 3D active motion capture device Codamotion CX1 for measuring body movement, 32ch Delsys EMG high-performing device Trigno Wireless System for the muscle activity detection, 2 force platforms AMTI for the pressure centre measure. One Immersion 3D visual projection system provides the visual input during a movement. The equipments are used for research to investigate motor control and sensorimotor transformations in healthy Human, in high-level athletes, in astronauts and patients. Different medical field are concerned in the latter case:  ENT, psychiatry, neurology, rehabilitation. The users are the researchers from the EPST, coach, members of the space agency and PU-PH from various hospital departments. They have published altogether more than fifty papers in various journals since the opening of the sensorimotricité platform.

The scientific projects on the platform can require either a CPP, an authorization from the CERES if minimally invasive or are reviewed by the staff of the platform if they are not invasive at all. The platform allows studies on populations of various age, from infants to senior.



Codamotion Système capture de mouvement 3D

Codamotion CX1

The CX1 sensor unit is at the heart of every Codamotion 3D system for indoor applications.

Uniquely, the CX1 combines three motion sensing MLA’s into one unit. This allows a standalone CX1 unit to make a complete 3D measurement without reference to any other units. It also means that the unit can be pre-calibrated and sealed. All the user does is to point the unit at the action.

Advanced Technology

Each Masked Linear Array (MLA) measures the pattern produced when the flash of an active marker casts a shadow on its sensor array through a grid of lines (the mask). Its extreme accuracy comes from measuring patterns of illumination across its whole array surface, not just the fraction used when, for example, a focused dot falls on a 2D camera array.The MLA doesn’t suffer from non-linear distortions caused by camera lenses and has an acceptance angle of over 75 degrees, allowing more measurement volume in less space, with sensor units placed closer to the action for added accuracy.

Summary Specifications (3D measurement from a single CX1 Unit)

● Physical Dimensions Weight of unit: 5kg Dimensions (L x W x D): 800x112x80mm

● Resolution Standard deviation in position of a static marker at 3m range (axes as Figure 2): ˃ 0.05mm (X and Z axes) ˃ 0.3mm (Y axis) Resolution as fraction of field of view: ˃ 1:70,000 (X and Z axes) ˃ 1:12,000 (Y axis)

● Sampling Rates vs. Marker Numbers ˃ 100Hz for 56 markers ˃ 200Hz for 28 markers˃ 400Hz for 12 markers˃ 800 Hz for 6 markers

● Real-Time Latency ˃ 0.5 milliseconds for applications using CODA SDK.˃ 5-10 milliseconds using Codamotion Analysis or ODIN software suites.

● Capture Volume ˃ The linear capture range expands at approximately 1.6 x the distance from the CODA unit. Maximum accuracy is achieved between 2.0m and 4.5m from the unit, as in Figure 3. ˃ The total capture volume within which maximum accuracy is maintained = 75 cubic metres.

Electromyographie, électrocardiographie

Plateforme de force BP600600

Electroencéphalogramme Biosemi



Oculometre Tobii Pro

immersaVu™ 320 system

The immersaVu™ 320 system includes:
– Panadome screen and hardware mounts
– Laser 4K (Native) Projector and Immersive Optics
– Warping and geometry correction software
– Aluminium support structure
– All signal and power cables
– Setup instructions and tools
– Sample content
– IDUK 1010 Series PC

System Features:
– 320cm Diameter Dome Screen
– 1950cm Height (2150cm With Attached Legs)
– 180° Horizontal field of view
– 75° Vertical field of view
– Number of users: 3-5
– Single Laser projector with Reflective Optics
– Native resolution: 3840 X 2160
– Contrast ratio: 6,000:1
– Brightness: 4000 lumens
– Display type: DLP
– Noise level: 35 decibels
– Power requirements: AC input 100 – 240 v
– I/O Connections: HDMI, DVI, VGA, S-Video, Mini jack audio, RS-232C, RJ 45, 12v trigger
– Network compatible


Il est important de noter qu’eu égard aux contraintes réglementaires, la plate forme a en fait deux usages. D’abord, elle sert à mettre au point des protocoles, qui sont ensuite transférés en milieu clinique. Ensuite, elle peut héberger des études qui sont entièrement réalisées sur place.

  • Vidal PP, Lacquaniti F. Perceptual-motor styles. Exp Brain Res. 2021 May;239(5):1359-1380. doi: 10.1007/s0022Martin GC, Brousse V, Connes P, Grevent D, Kossorotoff M, Da Costa L, Bourdeau H, Charlot K, Boutonnat-Faucher B, Allali S, De Montalembert M, Bremond-Gignac D, Vidal PP, Robert MP. Retinal atrophy and markers of systemic and cerebrovascular severity in homozygous sickle cell disease. Eur J Ophthalmol. 2022 Mar 29:11206721221090794. doi: 10.1177/11206721221090794. Epub ahead of print. PMID: 35345916.

  • Roren A, Mazarguil A, Vaquero-Ramos D, Deloose JB, Vidal PP, Nguyen C, Rannou F, Wang D, Oudre L, Lefèvre-Colau MM. Assessing Smoothness of Arm Movements With Jerk: A Comparison of Laterality, Contraction Mode and Plane of Elevation. A Pilot Study. Front Bioeng Biotechnol. 2022 Jan 21;9:782740. doi: 10.3389/fbioe.2021.782740. PMID: 35127666; PMCID: PMC8814310.

  • Bernard-Espina J, Dal Canto D, Beraneck M, McIntyre J, Tagliabue M. How Tilting the Head Interferes With Eye-Hand Coordination: The Role of Gravity in Visuo-Proprioceptive, Cross-Modal Sensory Transformations. Front Integr Neurosci. 2022 Mar 10;16:788905. doi: 10.3389/fnint.2022.788905. PMID: 35359704; PMCID: PMC8961421.


1. Vienne-Jumeau A, Oudre L, Moreau A, Quijoux F, Vidal P-P, Ricard D. Comparing Gait Trials with Greedy Template Matching. Sensors (Basel). 2019;19(14). doi:10.3390/s19143089

2. Moutsopoulou K, Pfeuffer C, Kiesel A, Yang Q, Waszak F. How long is long-term priming? Classification and action priming in the scale of days. Q J Exp Psychol (Hove). 2019;72(5):1183-1199. doi:10.1177/1747021818784261

3. Vienne-Jumeau A, Quijoux F, Vidal PP, Ricard D. Value of gait analysis for measuring disease severity using inertial sensors in patients with multiple sclerosis: protocol for a systematic review and meta-analysis. Syst Rev. 2019;8(1):15. doi:10.1186/s13643-018-0918-z

4. Hanneton S, Hoellinger T, Forma V, Roby-Brami A, Auvray M. Ears on the Hand: Reaching Three-Dimensional Targets With an Audio-Motor Device. Multisens Res. January 2019:1-23. doi:10.1163/22134808-20191436

5. Quijoux F, Vienne-Jumeau A, Bertin-Hugault F, et al. Center of pressure characteristics from quiet standing measures to predict the risk of falling in older adults: a protocol for a systematic review and meta-analysis. Syst Rev. 2019;8(1):232. doi:10.1186/s13643-019-1147-9

6. Le Bars S, Darriba Á, Waszak F. Event-related brain potentials to self-triggered tones: Impact of action type and impulsivity traits. Neuropsychologia. 2019;125:14-22. doi:10.1016/j.neuropsychologia.2019.01.012

7. Le Goic M, Wang D, Vidal C, et al. Corrigendum: An Initial Passive Phase That Limits the Time to Recover and Emphasizes the Role of Proprioceptive Information. Front Neurol. 2019;10:118. doi:10.3389/fneur.2019.00118

8. Dubost C, Humbert P, Benizri A, Tourtier J-P, Vayatis N, Vidal P-P. Selection of the Best Electroencephalogram Channel to Predict the Depth of Anesthesia. Front Comput Neurosci. 2019;13:65. doi:10.3389/fncom.2019.00065




Dans toute circonstance où le service rendu par la plateforme PES, même indirectement, à permettre une publication scientifique, la plateforme doit être mentionnée dans ladite publication, a minima dans le paragraphe des remerciements, sous les formes suivantes :
« ………….studies were performed at the ……….………. core facility of BioMedTech Facilities INSERM US36 | CNRS UMS2009 | Université de Paris ».
« We acknowledge the ………………. core facility of BioMedTech Facilities
INSERM US36 | CNRS UMS2009 | Université de Paris for assistance with the generation of ……….…….data».
« The authors acknowledge Ms, Mr ……….……….core facility of BioMedTech Facilities INSERM US36 | CNRS UMS2009 | Université de Paris for………….…………..».

En outre, et indépendamment du coût facturé, qui ne correspond qu’aux frais de fonctionnement de la plateforme, dans toute circonstance où le service rendu par la plateforme a imposé des mises au point technologiques spécifiques et significatives, le membre de la plateforme concerné doit être associé scientifiquement à la publication, donc participer à la rédaction de la publication et paraitre dans la liste des auteurs, avec l’affiliation suivante :
« BioMedTech Facilities INSERM US36 | CNRS UMS2009 | Campus Saint Germain-des-Prés -Université de Paris, 45, rue des Saints-Pères, Paris, France ».

Demandes de financements

« All the …………. outlined in this grant proposal will be conducted using systems that are located in the …………core facility of BioMedTech Facilities INSERM US36 | CNRS UMS2009 | Université de Paris ».

En fonction de l’implication de la plateforme dans la demande, il sera nécessaire de mettre plus de détails en insistant sur la qualité et l’expertise de la plateforme en y associant les responsables des plateformes selon le degré d’implication de la plateforme dans la demande.


Agenda PES

The Agenda of the plateforme


Mme Danping WANG

Plateforme d’Etude de la Sensorimotricité
BioMedTech Facilities
Université Paris Descartes
45 rue des Saints-Pères
75270 Paris Cedex 06

Tél. direct : +33(0) 1 42 86 43 59
Fax : +33(0) 1 42 86 33 99
Courriel :


Retrouver la Plateforme de Sensorimotricité au 7ème étage du bâtiment des Saints-Pères et toutes les coordonnées d’accès en suivant ce lien.