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Abstract. The ATP-driven Plasma Membrane Calcium pump or Ca2+-ATPase (PMCA) is character-
ized by a high affinity for calcium and a low transport rate compared to other transmembrane calcium
transport proteins. It plays a crucial role for calcium extrusion from cells. Calmodulin is an intracellu-
lar calcium buffering protein which is capable in its Ca2+ liganded form of stimulating the PMCA by
increasing both the affinity to calcium and the maximum calcium transport rate. We introduce a new
model of this stimulation process and derive analytical expressions for experimental observables in
order to determine the model parameters on the basis of specific experiments. We furthermore develop
a model for the pumping activity. The pumping description resolves the seeming contradiction of the
Ca2+:ATP stoichiometry of 1:1 during a translocation step and the observation that the pump binds
two calcium ions at the intracellular site. The combination of the calcium pumping and the stimu-
lation model correctly describes PMCA function. We find that the processes of calmodulin-calcium
complex attachment to the pump and of stimulation have to be separated. Other PMCA properties
are discussed in the framework of the model. The presented model can serve as a tool for calcium
dynamics simulations and provides the possibility to characterize different pump isoforms by different
type-specific parameter sets.

Key words: plasma membrane calcium pump, plasma membrane Ca2+-ATPase, calmodulin, stimu-
lation, relaxation, pumping activity, theoretical model, parameter

Introduction

The Plasma Membrane Calcium pump, with a high calcium affinity (K1/2 < 0.5 −
1 µM [1–3]) and a low transport rate (≈30 Hz, [4] and private communication),
is an important component for the maintenance of calcium homeostasis in cells.
By using the energy stored in ATP the PMCA transports intracellular calcium ions
out of the cell. It has been found in all mammalian cells [5], where the expression
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level does not exceed 0.1% of the total membrane protein [1, 6–8]. An exception
is the brain where this value is up to 10 times higher than in non-excitable cells
[5].

The four different pump isoforms are encoded by four independent genes, which
are indicated by numbers 1–4. The diversity of pump forms is further increased by
alternative mRNA splicing variants, characterized by small letters. There exist more
than 26 transcripts which differ in their regulatory properties, for instance in their
affinity to calmodulin, and which are distributed in a tissue-specific manner [1, 3].
Referring to the available data, we will investigate hPMCA2b and hPMCA4b, where
h stands for human [9].

Calmodulin is an intracellular calcium sensor protein with four relatively high-
affinity Ca2+ binding sites (Ka = 1–10 µM−1 at low ionic strength [10]). It belongs
to the mobile proteins of the EF-hand family with a helix-loop-helix conformation
[11]. Two calcium ions are bound at the N-terminal as well as at the highly homol-
ogous C-terminal domain, each of them formed by two EF-hands [8]. The domains
are connected by a flexible linker – an α-helix [8]. Because of its calcium bind-
ing capacity, calmodulin becomes relevant for the spatial propagation of calcium
signals within the cytoplasm. Additionally, the fully liganded calmodulin-calcium
complex is responsible for Ca2+-dependent regulation of the activities of a vast
array of different target proteins, including enzymes, ion pumps and channels [12].
Among those with high affinity (Kd = 5 nM) for the calmodulin-calcium complex
is the PMCA [13]. The free calmodulin-binding domain of the PMCA also interacts
with the ATP-binding site of the pump and acts as an inhibitor of ATP-driven pump
function [7, 14]. The detachment of that autoinhibitory domain segment after bind-
ing of the complex causes a stimulation of the pump function by increasing both
the affinity for calcium and the maximum turnover rate of calcium [2, 3, 8, 15]. The
stimulation and the relaxation to the initial unstimulated state happens on a time
scale of minutes and enables the pump to display a memory of previous calcium
transients [9].

Caride et al. have published a stimulation model making use of measurements
of the dynamical stimulation behavior [9]. We extend the reaction scheme and
aim to improve the model results in two ways: Firstly, we will deduce the stimu-
lation parameters from measured data. Secondly, we will include a saturation of
the stimulation rate for high calcium concentrations. Indeed, measured stimulation
constants call for a limitation by a maximum value at high calcium concentrations.
After completion of this work we were made aware of the recently published ar-
ticle in which Penheiter et al. propose a new stimulation model in conjunction
with fluorescence measurements [16]. Although Penheiter’s model includes satu-
ration, the relaxation of the PMCA to resting state is not considered. We separate
the stimulation as well as the relaxation into two steps and introduce rate limiting
reactions in our model. An analytical approach enables us to deduce the required
rate constants from measurements. The inferred system of coupled nonlinear dif-
ferential equations is solved numerically. The presented new model is in agreement
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with the investigated experimental data of the stimulation process by calmodulin.
Furthermore we predict the stimulation behavior beyond the available data.

Besides the stimulation model, we also consider the calcium pumping activity.
This joint model of stimulation and pumping may serve as a tool for simulations in a
wide variety of systems such as single cells or tissues. For that purpose we assume
that all isoforms are functionally similar and characterize the different isoforms
by type-specific sets of parameters. In this way we differentiate between universal
system independent parameters which are characteristic for each pump type and
specific parameters such as the PMCA protein expression level, which has to be
adapted to each experimental setup. In relation to the available experiments we
can specify parameter sets for the h2b and h4b isoforms, which turn out to be in a
biological reasonable range.

We begin by introducing the stimulation model reactions. We determine the
model parameters and calculate stimulation dynamics. In the second part of this
paper we focus on the derivation of an expression for the calcium pumping activity.
Finally, the stimulation and the pumping model together serve to fully describe
PMCA function.

Model

STIMULATION MODEL

We base the stimulation model on a system of rate reactions, which describe the
calcium- and calmodulin-dependent transition from unstimulated to stimulated
pump form and vice versa. The stimulation dynamics of an ensemble of PMCAs is
characterized by the following reactions:

M + 4Ca2+ k1
⇀↽
k−1

X4, (1)

P + X4
k2
⇀↽
k−2

PX, (2)

PX
k3
⇁ P∗

X, (3)

P∗
X

k4
⇀↽
k−4

P∗ + X4, (4)

P∗ k5
⇁ P. (5)

We use the following abbreviations: P denotes free PMCA, CaM · Ca4 ≡ X4,
P · CaM · Ca4 ≡ PX, P∗ · CaM · Ca4 ≡ P∗

X, and P∗ denotes the free stimulated
pump. P and PX are the unstimulated pumps and the asterisk denotes stimulated
pumps. M and Ca2+ are free intracellular calmodulin and calcium, respectively.
Note that in this article Roman style symbols refer to elements or proteins whereas
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italic style symbols denote concentrations or fractions of the respective element or
protein. The k’s are the rate constants. With the Law of Mass Action the model (1)–
(5) is rewritten as a set of differential equations for concentrations (see Equations
(16)–(18) in the Appendix for the stimulation model).

Reaction (1) describes the binding of calcium to calmodulin. The cooperative
binding of Ca2+ within each domain of the calmodulin protein [10] is simplified in
this reaction by the assumption of highly cooperative binding of all four calcium
ions. Based on the realistic assumption that the binding of calcium occurs faster
than the PMCA stimulation, which happens on a time scale of minutes, we treat
this binding as in a quasi-steady-state.

The assumption of irreversible stimulation (3) and relaxation (5) implies that the
pump can only be stimulated when X4 has attached to the pump, whereas recovery
back to the unstimulated pump form only occurs when X4 has detached. It will
be seen later on that the irreversible step (3) and the detachment step (4) limit
the stimulation and relaxation rate, i.e. both cannot exceed the rates k3 and k4,
respectively. Note that (4) does not necessarily mean that the complex detaches
as a whole. In principle the calcium ions could also detach from P∗

X first without
any alterations of the model because of the quasi-steady-state approximation in (1).
Thus, the essential statement of (4) is that calmodulin (with or without calcium)
has to detach in order to destimulate the pump.

Note that we introduced different pathways for the stimulation (reactions (2) and
(3)) and the relaxation process (reactions (4) and (5)). This enables us to describe
the temporal behavior of these two processes independently of each other, which
is rather important in order to reflect isoform-specific stimulation and relaxation
dynamics.

Stimulation Model Parameter Determination

We aim to relate the rate constants ki (i = ±1, ±2, 3, ±4, 5) and the stimulation
and relaxation constants kexp

stim and kexp
relax measured in experiment by Caride et al. [9].

Note that in [9] these constants are denoted by kact and kinact, respectively. Starting
from the stimulation model we deduce analytical expressions for the exponential
growth constants kstim and krelax.

Stimulation

Suppose only unstimulated pump form P to be present with the subsequent addition
of calmodulin. In the very beginning the stimulation model can be reduced to
the rate Equations (1)–(3). The binding of calcium to calmodulin (reaction 1) is
assumed to be in quasi-steady-state, therefore X4 ≡ CaM ·Ca4 = K ·M ·Ca4,
with K = k1/k−1. During the beginning of the stimulation the finite calmodulin
concentration imposes no restrictions on the dynamics, since only a minor fraction
of free X4 is bound. Therefore, the conservation of the calmodulin concentration is
neglected and M is considered to be constant. With this assumption and the pump
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mass conservation P0 = P + PX + P∗
X (note that P∗ is not involved here) reactions

(2) and (3) can be rewritten as a system of three linear homogeneous differential
equations of first order (the full nonlinear system is shown in Equations (16)–
(18) in the Appendix). The system is solved via the ansatz P = A1 exp(−kstimt),
PX = A2 exp(−kstimt) and P∗

X = A3 exp(−kstimt). The characteristic equation leads
to three solutions for kstim: k1

stim = 0 and

k(2/3)
stim = k−2 + k3 + k2 X4

2
±

√(
k−2 + k3 + k2 X4

2

)2

− k2k3 X4. (6)

With the boundary conditions P(0) = P0, P(∞) = 0, PX (0) = 0, PX (∞) = 0,
P∗

X (0) = 0, P∗
X (∞) = P0 and the pump mass conservation P0 = P(t) + PX (t) +

P∗
X (t) ∀ t , the exact solution for the stimulated pump form becomes

P∗
X (t) = P0

[
1 +

(
k(2)

stim

k(3)
stim

− 1

)−1

e−k(2)
stimt −

(
1 − k(3)

stim

k(2)
stim

)−1

e−k(3)
stimt

]
. (7)

During the first phase of stimulation the pump exhibits a single exponential
behavior as discussed in [17]. The exact solution for P∗

X (t) in Equation (7) can
be simplified to a single exponential expression in two cases. With k(2)

stim � k(3)
stim

Equation (7) becomes

P∗
X (t) = P0

(
1 − e−k(3)

stimt
)
. (8)

Formally, k(2)
stim � k(3)

stim also yields a single exponential behavior of the same
form but with k(2)

stim in the exponent. However, k(2)
stim ≥ k(3)

stim holds true (see Equation
(6)).

Assuming k(2)
stim � k(3)

stim the formation of the stimulated pump form during
the first phase of stimulation depends on k(3)

stim only. This approximation is sup-
ported by the fact that k(3)

stim converges at high calcium concentrations in the same
manner as kexp

stim does (see Figure 1). In contrast, k(2)
stim diverges for high calcium

concentrations (see Appendix). k(3)
stim can be interpreted as corresponding to the

single exponential fit constant kexp
stim. This enables us to determine the stimulation

parameter.
In an analogous fashion to the stimulation case we deduce an analytical ex-

pression like Equation (8) for the relaxation scenario. The exponent of this single
exponential expression can be related to the experimentally measured relaxation
constant (see Figure 2, calculation not shown).

A fit of the derived expressions for the introduced stimulation parameters to the
experimental data restricts their values. As a first approach we use Hill equations
(see Appendix for the stimulation case). The maximum stimulation and relaxation fit
constant can be identified with k3 and k4, respectively, which limits the stimulation



188 M. GRAUPNER

Figure 1. k(3)
stim is plotted against calcium at constant calmodulin concentration of 0.117 µM

for isoforms h2b and h4b according to Equation (6) (solid lines). The dotted lines represent the
k(3)

stim dependence on calmodulin at fixed calcium concentration of 0.8 µM for the h2b and 1 µM
for the h4b isoform. The stimulation rate kexp

stim (squares) has been measured at various calcium
concentration with constant calmodulin concentration of 0.117 µM (with kind permission of
Caride et al. [9]).

and relaxation rate. In contrast, the half maximum concentration of the Hill fit is
not sufficient to determine the remaining free parameters. Even with the knowledge
of the dissociation constant K2, K2 = k−2/k2 = 0.5 nM for the h2b isoform and
K2 = 5 nM for the h4b isoform [5, 9, 13, 15, 18–20], the system remains under-
determined because K is not precisely known. A lower boundary for K comes from
the requirement of positive reaction rates k2 and k−2 and from the value of K2. An
upper boundary for K is imposed by the choice of the value for K4 = k4/k−4. The
parameters resulting from the Hill equation fits are reported in Table I.

Attention should be drawn to the fact that Ca2+ is bound by polar amino acids
of calmodulin and therefore the affinity represented by K strongly depends on the
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Table I. Stimulation parameters and ranges determined by Hill equation fits

Parameter h2b h4b unit Source

K >0.029 1/µM4 see text

k3 0.055 0.024 1/s kmax
stim

k4 0.015 0.0347 1/s k
exp
relax

Pump specific rate constants and ranges determined by fits of the Hill equation
to the experimental data from Caride et al. (2001) [9].

Figure 2. The relaxation constant krelax is plotted for varying calcium (full lines) and calmodulin
(dotted lines) concentrations where calmodulin (M = 0.117 µM for both isoforms) and calcium
(Ca = 0.25 µM for h2b; Ca = 0.3 µM for h4b) are kept constant, respectively. Corresponding
measurements at M = 0.117 µM are shown (squares). With kind permission of Caride et al.
[9].
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ionic strength of the experimental solution [10]. We assume the same value of K
for all experiments, i.e. the same conditions in all experiments. Since the value
of K is not exactly known for the experiments under consideration, we consider
three different values and quote the respective parameter sets in order to show how
other parameters depend on K . The values used for K are 0.1, 1 and 10 µM−4

which, according to Linse et al., correspond to an experimental solution with a KCl
concentration of 18, 20 and 26 mM.

Using (6) and the parameter values determined by the Hill equation fit we are
able to calculate the calmodulin dependence of kstim without further assumptions.
The result in Figure 1 (dotted line) is in qualitative agreement with the experimental
data of Figure 3B in [16] (kact). The measurements have been carried out at a calcium
concentration of 10 µM with 0.005–0.065 µM calmodulin. The experimental data
could be fitted by a linear equation. The saturation suggested in Figure 1 occurs at
higher calmodulin concentrations only. A linear fit is also suggested in Figure 4A in
[21] for a range of 0.005–1.25 µM calmodulin at a constant calcium concentration
of 1 µM. However, the linearity of the fit relies on a single data point and we
consider this result to be in agreement with the saturation predicted by our model.
We quote kstim at a calcium concentration of 0.8 µM for the h2b isoform and at 1
µM for h4b. At both cases the stimulation constant saturates already at low calcium
concentrations, i.e. at ≈0.2 µM for h2b and at ≈0.4 µM for h4b. The results from
the Hill equation fit also allow us to predict the calmodulin dependence of the
relaxation constant krelax, which has not been measured so far (see Figure 2).

We have seen that it is not possible to reliably determine all stimulation parame-
ters by a fit on the basis of Hill equations. We therefore use a Metropolis algorithm,
which is based on a least-squares fit routine, to incorporate three sets of avail-
able data for the stimulation constant, the relaxation constant and, in addition, the
steady-state pumping activity, which will be discussed below. The medians and the
confidence intervals in Tables II and IV are calculated from a Bootstrap method, i.e.
random data sets of the same size are drawn from the original data set from which,

Table II. Determination of stimulation parameters with a Metropolis algorithm

Parameter h2b c.i. (68%) h4b c.i. (68%) unit

k2 1.99 1.92. . .8.91 0.096 0.088. . .0.168 1/(µM s)

k3 0.056 0.053. . .0.058 0.023 0.021. . .0.025 1/s

k4 0.016 0.015. . .0.052 0.035 0.035. . .0.147 1/s

k−4 20001 19988. . .20010 19999 19978. . .20017 1/(µM s)

k5 0.12 0.02. . .0.35 0.84 0.14. . .0.97 1/s

The medians and the confidence intervals (c.i.) of 68% are calculated with a Bootstrap
method combined with a Metropolis algorithm using experimental data for the stimulation
constant, relaxation constant and steady-state pumping activity (see text for more details).
K is chosen to be 1 µM−4. k−2 can be calculated from k2 using the known dissociation
constant K2 = k−2/k2 (see text).
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Table III. Parameters at different values of K

Parameter h2b h4b unit

K 0.1 1 10 0.1 1 10 1/µM4

k2 24.8 1.99 0.20 1.46 0.096 0.0093 1/(µM s)

k3 0.058 0.056 0.056 0.023 0.023 0.023 1/s

k4 0.015 0.016 0.018 0.036 0.035 0.035 1/s

k−4 19991 20001 20001 19993 19999 19998 1/(µM s)

k5 0.019 0.12 0.68 0.06 0.84 7.4 1/s

J ∗
max 0.24 0.24 0.24 0.73 0.73 0.76 µmol

mg min

H ∗
1/2 0.44 0.45 0.45 0.56 0.57 0.54 µM

See Tables II and IV and the text for more details concerning the determination
of these values.

using the Metropolis algorithm, the fit parameters are calculated. Repeating this
procedure 10,000 times enables us to calculate medians and confidence intervals
for the fit parameters. The medians of the parameters in Table III are determined
similarly but for different values of K .

Note that we have derived Equation (6) only by considering the beginning of
the stimulation. An alternative approach to determine the parameters would be
the fit of the exact model equations to the time course of inorganic phosphate
Phi release (whereas the subscript refers to inorganic). Phi is produced by ATP
hydrolysis during pumping (see section “Results” and [9, 17]). However, this would
not improve the accuracy of the parameter determination since these data contain
information not only about the stimulation but also about the pumping of the PMCA,
which cannot be disentangled. Only a measurement of the exact stimulation and
relaxation behavior would provide relevant additional information in order to obtain
a more reliable choice in Table II.

Stimulation Dynamics

Based on the stimulation model reactions (1)–(5) we can simulate the dynamics of
the unstimulated and stimulated PMCA states. With the obtained isoform-specific
parameters, differences between the isoforms can be discussed. The fact that the
value of k3 for the h2b isoform is more than twice that of the h4b isoform reflects
faster stimulation, whereas relaxation is faster for the h4b isoform since kh4b

4 > kh2b
4 .

The stimulation and relaxation dynamics of both isoforms are shown in Figure 3.
In Figure 3(a) we start with no stimulated pump (i.e. fstim(t0 = 0) = 0) and expose
the pump to a high calcium concentration. In the relaxation Figure 3(b) all pumps
are stimulated (i.e. fstim(t0 = 0) = 1) and the calcium concentration is decreased
to 0.1 µM.
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Figure 3. The dynamics of the fractions funstim = P+PX
P0

(solid lines for h2b, dashed-dotted

lines for h4b) and fstim = P∗+P∗
X

P0
(dashed lines for h2b, dotted lines for h4b) are shown during

stimulation (panel (a)) and relaxation (panel (b)). The total calmodulin concentration is 0.117
µM and P0 = 0.005 µM. Note that the formation and degradation of stimulated and unstimu-
lated pump form depend on the available calcium and calmodulin concentration. The present
calcium concentration is 0.5 µM during stimulation (a) and 0.1 µM during relaxation (b).

PUMPING MODEL

Up to this point we have described the temporal transition between unstimulated and
stimulated pump forms. In this section we will mathematically characterize how the
PMCA transports calcium ions across the membrane depending on the intracellular
calcium concentration. We will consider the pump cycle to be in quasi-steady-state,
i.e. the pump activity reacts immediately to the intracellular calcium concentration.
This simplification is justified since the pump activity adapts to different calcium
concentrations within milliseconds while the stimulation and relaxation happen on
a time scale of minutes.



A THEORY OF PLASMA MEMBRANE CALCIUM PUMP STIMULATION AND ACTIVITY 193

Pumping Activity

In contrast to the Ca2+ pump of the sarcoplasmic reticulum (SERCA), the stoi-
chiometry between transported Ca2+ and hydrolyzed ATP of the PMCA is most
likely 1:1 [1, 3, 7, 22]. The SERCA pump works with a calcium:ATP ratio of 2:1
[7, 22]. Hence, the transport step of one calcium ion through the plasma membrane
becomes

Pin
r1
⇁ Pout + Ca2+

out. (9)

Pin stands for a state of the pump in which one or two calcium ions are bound and
which can perform the calcium transport process by a transformational change.
Pout refers to the pump state after the translocation step. We do not consider the
transformational change from Pout to Pin, which closes the pump cycle. Since ATP
is assumed to be sufficiently available in cells we treat the ATP concentration as
a thermodynamical bath. The calcium transport rate J in the outward direction is
given by

J = r1 · Pin. (10)

Carafoli pointed out that the activation of the ATPase by calcium and the satu-
ration can best be described by a Hill equation with a Hill coefficient of two [3].
This may be related to the binding of 2 calcium ions at the intracellular binding site
of the pump even if only one calcium ion is translocated. In the following this is
incorporated into the model:

P + Ca2+ r2
⇀↽
r−2

P · Ca, (11)

P · Ca + Ca2+ r3
⇀↽
r−3

P · Ca2. (12)

The pump state Pin is assumed to comprise the pumps with one and two calcium
ions, i.e. Pin = P · Ca + P · Ca2. This implies that the pump with one calcium ion,
P·Ca, is able to perform the transport process, which is not necessarily the case, but
the most general assumption (see also comments after Equation (14)).

In the quasi-steady-state approximation of Equations (11) and (12) we find an
expression for Pin. Using this expression the calcium transport rate (Equation (10))
becomes

J = r1
R3 Ca + Ca2

R2 R3 + R3 Ca + Ca2
, (13)

with R2 = r−2/r2 and R3 = r−3/r3 and the pump mass conservation 1 = P +
P·Ca + P·Ca2. Note that we have divided the pump mass conservation by P0 so
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that the different pump states become fractions instead of concentrations. The sum
of the fractions of all the three pump states is of course 1.

Fitting Equation (13) to the experimentally measured transport rate in the ab-
sence of calmodulin yields R2 = 38 µM and R3 = 0.011 µM for the h2b isoform
(see Figure 4). These values suggest a cooperative binding of both calcium ions,

Figure 4. Steady-state calcium dependent pump activity of both isoforms. The measurements
in the absence (triangles) and in the presence (circles) of 0.117 µM calmodulin have been kindly
provided by Caride [9]. The total pump concentration P0 is taken from [9] to be 0.005 µM.
Without calmodulin (solid line) the fit of Equation (13) to the data displays no difference
to the fit of the simplified Equation (14) which presumes a cooperative binding. Therefore,
only the fit of Equation (14) is shown. The dashed line shows the realistic case and displays
fstim 
 0 for low calcium concentrations. The dashed-dotted line depicts the pump activity
with the assumption that only stimulated pump form is present at all calcium concentrations,
i.e. fstim = 1 and funstim = 0.
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i.e. the binding of the first ion is slow but of the second fast. In the model this means
r2 → 0 and r3 → ∞ while keeping r2 r3 constant, in which case R2 → ∞ and
R3 → 0 while R2 R3 is constant. Experiments performed by Elwess et al. [15] or by
Verma et al. [23] yield the same sigmoidal behavior of the transport rate as found
by Equation (13) in Figure 4, supporting the assumption of cooperative binding.
Thus (13) is simplified to

J = r1
Ca2

R2 R3 + Ca2
= Jmax

Ca2

H 2
1/2 + Ca2

. (14)

In this expression the pumping activity of the P · Ca state which has only one calcium
ion bound is neglected. The high cooperativity prevents us from deciding whether
this state is contributing to the total pump activity or not.

Equation (14) has the form of a Hill equation with Hill coefficient n = 2. r1

can be identified with the maximal pump rate Jmax. Since the maximum rate of
the calcium pumping is limited by r1 in Equation (14), r1 = Jmax stands for the
saturating properties of the pumping process. H1/2 = √

R2 R3 is the half activation
concentration and a measure for the affinity of the pump to calcium. We will use
Equation (14) for all further investigations in this paper.

So far we have only looked at the calcium-dependent pump activity in the
absence of calmodulin without considering pump stimulation. The activity in the
unstimulated state corresponds to the base activity in the absence of calmodulin. It
is very likely that the interaction with calmodulin causes the increase in pumping
activity since it is well-known that calmodulin increases both the affinity for calcium
as well as the maximal activity and both effects occur during stimulation [16]. The
transition dynamics is given by the stimulation model in Equations (1)–(5). Hence,
the total pumping rate of a system becomes

J = funstim
Jmax Ca2

H 2
1/2 + Ca2

+ fstim
J ∗

max Ca2

H∗2
1/2 + Ca2

, (15)

where funstim and fstim are the fractions of unstimulated and stimulated pump with
funstim = P+PX

P0
and fstim = P∗+P∗

X
P0

.
One input parameter of the stimulation model is the total pump concentration

P0. This concentration P0 is taken from Caride et al. [9] to be 0.005 µM. Assuming
a sufficiently large amount of pumps, the total pump concentration is irrelevant for
the pumping model since we consider fractions of pumps in different states only.
In contrast, in the stimulation model, the proportion between the total calmodulin
concentration, M0, and the total pump concentration, P0, is significant. If, for exam-
ple, the amount of PMCA’s exceeds the number of available calmodulin proteins,
not all pumps could be stimulated.

For simulations the surface density of PMCA’s has to be transfered into
the concentration P0. This implies that we can neglect the diffusion of the
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calcium-calmodulin complex to and from the pump, which is justified for rather
small compartments only. For larger compartments, a space-resolving model with
a local pump concentration has to be used.

Pumping Parameter Determination with Steady-State Pump Activity

By setting all differential equations (Equations (16)–(18), see Appendix) of the
stimulation model (reactions (1)–(5)) to zero the steady-state distribution of P , PX ,
P∗

X and P∗ is found. This determines the asymptotic steady-state fractions funstim

and fstim in Equation (15). Using this distribution we calculate the asymptotic
pumping activity as a function of the calcium and calmodulin concentration. Many
measurements of the steady-state pump activity in the presence and the absence
of calmodulin have been performed [9, 19, 23–25]. Fitting Equation (15) to one
of these experiments yields Jmax, J ∗

max, H1/2 and H∗
1/2. In Figure 4 we use the

steady-state activity measurements done by Caride et al. [9].
With funstim = 1 and fstim = 0 in Equation (15) we fit the steady-state activity

curve in the absence of calmodulin, which supplies Jmax and H1/2 in Equation (14).
Equation (15) is used to fit the data in the presence of calmodulin (see dashed line
in Figure 4). We determine J ∗

max and H∗
1/2 with that fit, whereby the steady-state

fractions funstim and fstim are determined by the stimulation model. These fractions
respect the fact that at lower calcium concentrations in the presence of calmodulin
no stimulated pump form is available ( fstim 
 0). This can be seen by inspecting the
dashed-dotted line in Figure 4, which is plotted with the artificial assumption that
only stimulated pump form ( fstim = 1) is present for all calcium concentrations. The
gap between this virtual line (dashed-dotted) and the fit of Equation (15) (dashed
line) at low calcium concentrations is determined by the choice of the stimulation
parameter set of Table II. Although we determine J ∗

max and H∗
1/2 with that fit,

changes in J ∗
max and H∗

1/2 only alter the slope and the saturation value whereas
the gap at low calcium concentrations is not influenced by these changes: J ∗

max
and H∗

1/2 do not alter the low calcium concentration limit. Note that the fit of the
case with calmodulin being present, and therefore the determination of J ∗

max and
H∗

1/2, is accomplished with the Bootstrap method using the Metropolis fit algorithm
that also takes into account the stimulation and relaxation constant data sets. The
pumping parameters obtained from this routine are summarized in Table IV. The
impact of stimulation by calmodulin on PMCA function, namely to increase both
the affinity to calcium H1/2 and the maximum pump rate Jmax, can be affirmed.

The obtained parameters Jmax and J ∗
max refer to the investigated system, i.e. they

are determined by the ensemble of investigated pumps. In contrast to the pump rate,
the affinity for calcium expressed by H1/2 or H∗

1/2 is a universal parameter since it
does not depend on the surface density. Knowing the expression level of PMCA’s
within the system and the average protein mass one can use Jmax and J ∗

max to calcu-
late the maximum unstimulated Jsingle and stimulated pumping rate J ∗

single of a single
pump respectively, which is then a system-independent parameter characteristic for
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Table IV. Pumping parameters

Parameter h2b c.i. (68%) h4b c.i. (68%) unit Characteristic

Jmax 0.116 ±0.008 0.148 ±0.018 µmol
mg min System specific

(48% of J ∗
max) (20% of J ∗

max)

Jsingle 5.0 ±0.3 6.4 ±0.8 Hz Universal

J ∗
max 0.24 0.23. . .0.26 0.73 0.68. . .0.75 µmol

mg min System specific

J ∗
single 10.4 10.0. . .11.3 31.7 29.5. . .32.5 Hz Universal

H1/2 0.63 ±0.07 1.45 ±0.26 µM Universal

H ∗
1/2 0.45 0.29. . .0.53 0.57 0.46. . .0.62 µM Universal

Parameters of the steady-state pump activity determined using experimental data of Caride
et al. 2001 [9]. K is chosen to be 1 µM−4. The activity values in the absence of calmodulin
are determined by a gnuplot fit to the experimental data. The medians and the confidence
intervals (c.i.) of J ∗

max and H ∗
1/2 are derived from a Bootstrap method combined with the

Metropolis algorithm (see text for more details).

the isoform studied. Caride et al. achieved with the baculovirus expression system
an amount of 5% PMCA’s of total membrane protein (private communication).
With this data and, with an overall average protein mass of 130 kDa [7], we de-
duced a turnover rate of 10.4 Hz out of J ∗

max = 0.24 µmol/(mg min) for the h2b
isoform and 31.7 Hz out of J ∗

max = 0.73 µmol/(mg min) for the stimulated h4b
rate.

With the use of the pumping parameters and the stimulation rate constants
(Table II) we can calculate the calmodulin dependence of the steady-state activ-
ity (see Figure 5). The displayed fractional steady-state activity f is a universal
description, i.e. it is not dependent on the surface density. The quantitative be-
havior of our calculation is confirmed by experimental data of Penheiter et al.
[20] (compare our Figure 5 with Figure 3 on page 17,730 [20]). Note that we cal-
culated this steady-state activity out of the available data without further fitting
routines.

Results

COMPREHENSIVE PMCA DYNAMICS

With the knowledge of the stimulation parameters from Table II, and the pumping
properties in Table IV, we are now able to simulate the time dependent behavior of
the calcium pumping rate of the PMCA, including the stimulation.

In a corresponding experiment [9], tissue with PMCA pumps of isoform h2b
was exposed consecutively to different calcium concentrations. The time course
of Phi produced is shown in Figure 6(a) (crosses). It is rather likely that during a
single turnover of the PMCA one ATP is hydrolyzed as well as one calcium ion
transported [1–3, 7]. Therefore the rate of Phi production directly corresponds to
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Figure 5. The fractional calmodulin dependent steady-state pump activity f = (J −
Jmax)/(J ∗

max − Jmax) of the h4b isoform at Ca = 0.7 µM is shown. Jmax is the activity in
the absence of calmodulin and J ∗

max is the steady-state activity in the presence of saturating
calmodulin, both at a calcium concentration of 0.7 µM. The calculation has been done with
P0 = 0.005 µM.

the calcium pumping rate. Utilizing Equation (15), we can calculate and sum up the
time course of Phi production. With the use of the universal parameter sets we adapt
our simulation (solid line in Figure 6) to this experiment by adjusting the unknown
surface density of PMCA’s. This yields an expression level of 9.8% PMCA’s of total
membrane protein, which is comparable to the quoted 5% (see above). Note that we
have added a constant base level rate with respect to the non-zero Phi production
rate in the absence of calcium (Ca = 0 µM) in Figure 6(a), which has to be related
to a different source within the investigated tissue. In fact, in the absence of calcium
no ions can be transported, i.e. no ATP can be hydrolyzed, and no Phi produced.
Note that during the second exposure to 0.5 µM calcium the measured activity
significantly decreases compared to the first time at high calcium concentration,
i.e. even under the same experimental conditions the Phi production rate changes
during the experiment. This might be related to dwindling resources such as ATP
or the increasing significance of ATP and calcium diffusion. Such effects naturally
cannot be reproduced by the present model.

After 300 seconds at 0.5 µM calcium, during which a PMCA fraction is stimu-
lated, the concentration was decreased to 0.05 µM calcium for different durations
and raised again to high calcium concentration. The turnover rate at the end of the
second low calcium exposure J (second)

0.05 is, due to the gradual decay of stimulated
pump form, dependent on the duration of the low calcium phase. The fraction of

change in J0.05, J (second)
0.05 −J (first)

0.05

J (first)
0.5 −J (first)

0.05

is shown in Figure 6(b). The temporal behavior of pump
function is quantitatively reproduced.
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Figure 6. (a) The theoretical (solid line) and the experimentally measured (crosses) time course
of Phi production during different calcium concentration exposures, shown on the top of the
panel. The present calmodulin concentration was 0.117 µM. (b) The fraction of change in

J0.05, (
J (second)

0.05 −J (first)
0.05

�J ) as a function of time at low calcium (0.05 µM), experimentally measured
(crosses) and theoretically predicted (solid line). Both experiments were performed with the
h2b isoform (with kind permission of Caride et al. [9]).

Discussion

Our combined model of stimulation and pumping is able to reproduce the PMCA be-
havior. Therefore the assumptions of the stimulation model could serve as a possible
explanation for the underlying biological steps. An essential element of the model
is the separation of the attachment of the calmodulin-calcium complex to the pump
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(reaction (2)) and the stimulation, which occurs in an additional step (reaction (3)).
The convergence of the stimulation constant kexp

stim at high calcium concentrations
in Figure 1 provides strong evidence for that assumption. The translocation step
in reaction (9) has the same characteristics. These steps can be seen as internal
conformational changes where their velocity cannot be further increased by higher
concentrations. In contrast to reaction (3) which is confined by the total avail-
able pump concentration P0 and k3, the velocity of reaction (2) can be arbitrarily
increased with higher calcium or calmodulin concentrations. Similarly the satu-
ration of the relaxation constant kexp

unstim at low calcium concentrations calls for a
rate limiting reaction during relaxation. Regarding the relaxation pathway in this
context yields two steps which could meet this property, i.e. forward reaction (4)
and reaction (5). The Metropolis fit algorithm provides similar outcomes for both
possibilities. In general the routine delivers k4 < k5, i.e. reaction (4) limits the
relaxation rate. The experimental data could also be reproduced assuming k4 > k5,
which corresponds to the irreversible relaxation being the limiting step. However,
Figure 4b in [16] provides clear evidence that the limiting step is related to the
dissociation of calmodulin, hence step (4) in our model.

The separation between stimulation (reactions (2) and (3)) and relaxation (re-
actions (4) and (5)) enables us to describe the different temporal behaviors inde-
pendently. This is required since, for example, the isoforms h2b and h4b display
opposite stimulation and relaxation behavior: The h2b isoform is stimulated more
quickly than h4b but relaxes more slowly under the same conditions. Assuming the
stimulation reaction (3) would become reversible, the formation and degradation of
stimulated pump form P∗

X (t) could be described together by the first three reactions
(1)–(3) without the use of reactions (4) and (5). In such a case the calcium- and
calmodulin-dependent stimulation and relaxation velocity could not be adjusted
autonomously, which is required for the reproduction of the experimental data.
The formal introduction of two different pathways may be interpreted as different
underlying transformational changes.

Comparing our parameters with those of the model proposed by Penheiter et al.
in [16] reveals strong agreement. These authors argue that the preferred stimulation
route in their branched model is the binding of the X4 complex to the unstimulated
(closed, in their terminology) conformation and the subsequent stimulation (open-
ing) of the pump. This corresponds to our single stimulation step. The second route
assumes a stimulated (open) state of the pump in the absence of the X4 complex
which would be stabilized by the binding of the calmodulin-calcium complex. This
branch had to be introduced in [16] in order to describe the initial increase in flu-
orescence. As in our model, the conformational change limits the stimulation. The
limiting steps of the Penheiter et al. model are determined by kp

1 and kp
4, where

kp
4 describes the preferred stimulation route (here p refers to reaction rates in the

Penheiter model). The value for kp
4 = 0.034 1/s is similar to our k3 (see h4b isoform

in Tables I and II). Their model, and ours confirm the known affinity of the h4b
isoform for the calmodulin-calcium complex [13, 17, 18, 20].
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Since we have based the parameter deduction on inorganic phosphate, Phi ,
release measurements and the Penheiter model relies on fluorescence measurements
based on the binding of calmodulin to the pump, the agreement of the parameters
justifies both approaches. However, the reduction of the Penheiter model to the
stimulation pathway ending in a stimulated pump with isomerized CaM protein
(TA-CaM-PMCA∗

0) might not account for the competing stimulation and relaxation
processes of the pump. This fact, together with the branched model ansatz, could
be the reason for slightly different reaction rates.

As already mentioned, the choice of ki (i = ±2, 3, ±4, 5) and therefore the
choice of K has a sensitive effect on the stimulation and relaxation graphs in
Figures 1 and 2. Furthermore, the steady-state graphs in Figure 4 are strongly
influenced by these parameters. The attempt to reproduce all experimental data
for both isoforms on the basis of our model by using a single value of K leads
us to the following conclusion: The affinity of the PMCA for the X4 complex is
altered during the stimulation process. The unstimulated pump P exhibits a lower
affinity than the stimulated pump P∗ (compare K2 = k−2/k2 to K4 = k4/k−4).
For both isoforms the value of K4 is three orders of magnitude lower than K2

(K4 = 0.0008 nM for h2b, K4 = 0.002 nM for h4b). Within the framework of
our model the assumption K2 = K4 fails to adequately reproduce all experimental
data. In the case of the isoform h4b this assumption does not allow a sufficient
amount of PMCA to become stimulated in the steady-state calculation. In principle
the experimental data in Figure 4 could still be fitted by adjusting H∗

1/2 and J ∗
max,

but this would contradict the statement that Jmax is about 20% of J ∗
max for the

h4b isoform [9, 15, 19, 20]. Note that this result is indirectly supported by the
observation that the Ca2+/calmodulin-dependent protein kinase II (CaMKII) target
protein has a thousandfold higher affinity to the X4 complex in the stimulated state,
an effect denoted as calmodulin trapping [26].

The fit results in Table III show, that apart from k2 and k5, the parameters remain
relatively constant for different values of K . Hence, an exact determination of K
under the specific experimental conditions could improve the determination of k2

and k5 but would not change the remaining values of the stimulation, the pumping
parameters or the main conclusions. Note, that for all of the three assumed values,
i.e. K = 0.1, 1 and 10 M−4, the experimental data of both isoforms could be
reproduced with equal accuracy.

We have also investigated a different approach for PMCA relaxation. In this
scenario only calcium dissociates from the complex P∗

X in step (4)′. The following
reaction (5)′ comprises the relaxation and the detachment of calmodulin. Though
the reproduction of the available experimental data is ensured with this approach,
there are two aspects which distinguish it from the present model. First, the analyt-
ical expression for the relaxation constant becomes independent of calmodulin due
to the irreversibility of step (5)′. It is, therefore, impossible to predict the calmod-
ulin dependence of the relaxation rate as done in Figure 2. Second, similar to the
change of the pump affinity for the X4 complex in the present model, the affinity of
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calmodulin for calcium would be different depending on whether calmodulin is free
(reaction (1)) or bound to the PMCA pump (reaction (4)′). We can find experimen-
tal support for both scenarios. As previously quoted, CaMKII is known to change
its affinity for the calmodulin-calcium complex [26], whereas Olwin et al. report
a change of the dissociation constant between CaM and calcium over two orders
of magnitude in the presence and in the absence of a target protein, i.e. in their
case the rabbit skeletal muscle myosin light chain kinase [27]. No experimental
evidence is known to us whether calcium or the whole X4 complex detaches first
from the pump. However, since we treat the balance between free X4, calmodulin
and calcium in quasi-steady-state our approach presented here is the more general
one since reaction (4) makes only the statement that the detachment of calmod-
ulin limits the relaxation rate but does not restrict in which order the components
dissociate.

In the description of the pumping behavior we have incorporated the experi-
mental observations that although the translocation step involves only one calcium
ion (indicated by the 1:1 stoichiometry of ATP to transported calcium) the pump
binds two Ca2+ ions with high affinity [1, 2, 3, 7]. The experimental data provide
strong evidence for the assumption that the binding of the two calcium ions to the
intracellular binding site of the pump is highly cooperative. The deduced pumping
rate expression is in accordance with these observations. The high cooperativity
prevents us from determining whether only P · Ca2 or also P · Ca can perform the
transport process of one calcium ion. Our general ansatz could in principle account
for recent findings of Guerini et al. in which the Ca2+-dependent ATPase activity is
fitted by a Hill function with Hill coefficient 1 [28]. However, the fit to the available
data (see Figure 4) suggests a Hill coefficient 2.

Our aim to characterize pump isoforms by different universal parameter sets is
achieved for the h2b and h4b isoforms. We assume the same functionality for all
isoforms, hence these parameters express relevant differences in the stimulation and
pumping behavior. With the concept of providing universal parameter sets we claim
that the sets are applicable to other simulations including hPMCA2b or hPMCA4b
isoforms.

Out of the universal parameters of the h4b isoform we can calculate an accurate
prediction of the calmodulin dependence of the steady-state activity. Using the
expression level and the overall average protein mass we calculated single pump
turnover rates. Based on a measurement of Elwess et al. in 1997 [15] and using an
expression level of 0.2% we computed a turnover rate of 8.5 Hz for the rPMCA2b
isoform. Our calculated single turnover rates (Table IV) are in the same range as
those of Blaustein who indicated a turnover of ≈30 Hz without specifying the
isoform ([4] and private communication). Adamo et al. made direct measurements
of the turnover rate and determined it to be 33 Hz for the erythrocyte PMCA
[29]. However, the calculated turnover rates, even being in the appropriate range,
may differ from the presented values since the expression levels of the pump can
not be determined with much accuracy, and factors such as other proteins and
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lipids interacting with the pump in the biological membrane environment can have
substantial effects.

For comparison, the turnover rate of the Sarcoplasmic Reticulum Ca2+-ATPase
(SERCA) lies within the same range. The SERCA1, SERCA2a and SERCA3 iso-
forms transport calcium with a turnover rate of ≈ 10 Hz, whereas the the SERCA2b
isoform exhibits a rate of ≈ 5Hz [22]. Note that in contrast to the PMCA the SERCA
carries two calcium ions per pump cycle reflected in the Ca2+:ATP stoichiometry
of 2:1 [7, 22].

The isoform-specific universal set of parameters may be applied to different sce-
narios by incorporating the system-specific expression levels of PMCA. However,
alterations of the stimulation rate constants may occur under modified experimental
conditions. Since we consider proteins with polar binding sites, we cannot exclude
a change of dynamical properties at different ionic strengths of the experimental so-
lutions. Corresponding experiments could elucidate the importance of such effects.
Also our theoretical proposition of the calmodulin dependence of the stimulation
and the relaxation constant which differs from the linear behavior found by Caride
et al. [9] calls for further experimental investigations.
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Appendix

STIMULATION MODEL

By using the Law of Mass Action the stimulation model (1)–(5) is rewritten as a
set of differential equations for concentrations

d P

dt
= −k2 P(M0 − PX − P∗

X )

1 + 1/(K Ca4)
+ k−2 PX + k5(P0 − P − PX − P∗

X ), (16)

d PX

dt
= k2 P(M0 − PX − P∗

X )

1 + 1/(K Ca4)
− (k−2 + k3)PX , (17)

d P∗
X

dt
= k3 PX − k4 P∗

X + k−4(P0 − P − PX − P∗
X )

M0 − PX − P∗
X

1 + 1/(K Ca4)
. (18)
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Pump conservation P0 = P + PX + P∗
X + P∗ where P0 is the total pump con-

centration and calmodulin conservation M0 = M + X4 + PX + P∗
X with M0 as total

calmodulin concentration are respected. We solve this system of coupled ordinary
differential equations of first order with a fourth-order Runge-Kutta method. This
has been implemented in a C++ program.

HILL FIT OF THE STIMULATION CONSTANT

The data from [9] can be fitted by the Hill equation

kexp
stim(Ca) = kmax

stim Ca4

Ca(1/2)
stim

4 + Ca4
, (19)

with the maximal stimulation constant kmax
stim and the half maximum concentration

Ca(1/2)
stim . According to (6), k(3)

stim converges to k3 for large calcium or calmodulin con-
centrations (see below), hence k3 constrains the maximum stimulation rate and can
be identified with kmax

stim. This reflects the fact that Equation (3) limits the stimulation
rate. By setting the right hand side of Equation (6) equal to k3/2, an expression for
the Ca2+ concentration at half maximal stimulation is derived:

Ca(1/2)
stim = 4

√
k−2 + k3/2

k2 K M
. (20)

Note that the calmodulin concentration M is kept constant.
In a similar manner, the experimental relaxation constants can be fitted by an in-

verse Hill equation. Note that we expect the dependence of the stimulation and relax-
ation constants on calmodulin to be fitted by a Hill equation with Hill coefficient 1.

LIMITS OF EQUATION (6)

We consider the limits of k(2/3)
stim for X4 → ∞ in the case of real and positive rate

constants k2, k−2 and k3:

lim
X4→∞

k(2/3)
stim = lim

X4→∞
k−2 + k3 + k2 X4

2

±
√(

k−2 + k3 + k2 X4

2

)2

− k2k3 X4

= lim
X4→∞

k−2 + k3 + k2 X4

2

×
(

1 ±
√

1 − 4k2k3 X4

(k−2 + k3 + k2 X4)2

)
. (21)
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For k(2)
stim this expression diverges, whereas we find limX4→∞ k(3)

stim = k3 using the
rule of de l’Hospital.
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