Introduction to computational neuroscience: from single neurons to network dynamics

Michael Graupner

Brain Physiology Lab, CNRS UMR 8118, Université Paris Descartes michael.graupner@parisdescartes.fr

Tree no neurons

C.elegans 302 neurons

Fly 1 000 000 neurons

Rat 1 000 000 000 n.

Human 80 000 000 000 000 n. The brain generates motion (=behavior)

more complex brains generate a greater variety of behaviors

more complex brains can learn more behaviors

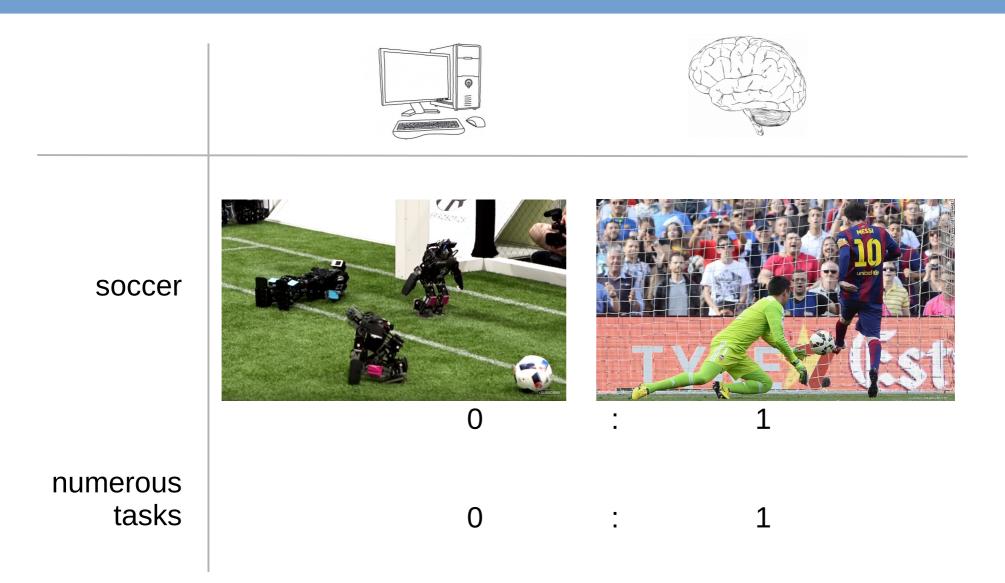
Cognitive processing

chess	1	:	0
scrabble	1	:	0
Jeopardy!	1	:	0
video games	1	:	0
Go	1	:	0
Object recognition	1	:	1

Computers outperform humans in algorithmic tasks and tasks involving database mining.

Lionel Messi – Barcelona : Getafe CF 2007

RoboCup 2016



Brains are better in tasks involving interactions with the real world.

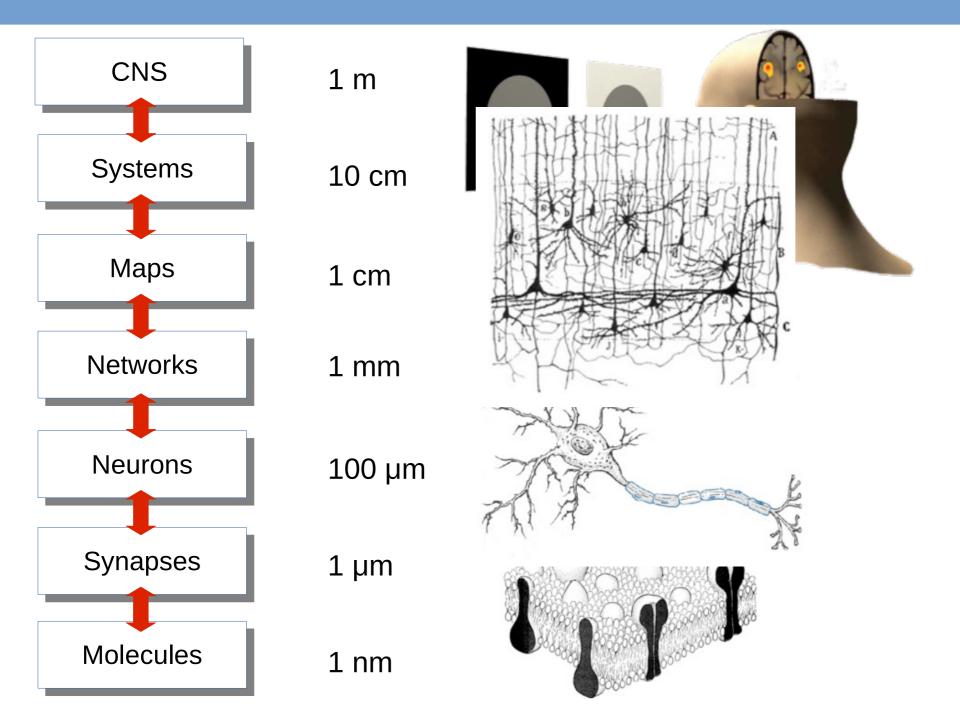
Why model the brain?

→ to understand it

→ to repair/improve it

→ to get inspired

The many spatial scales of the brain



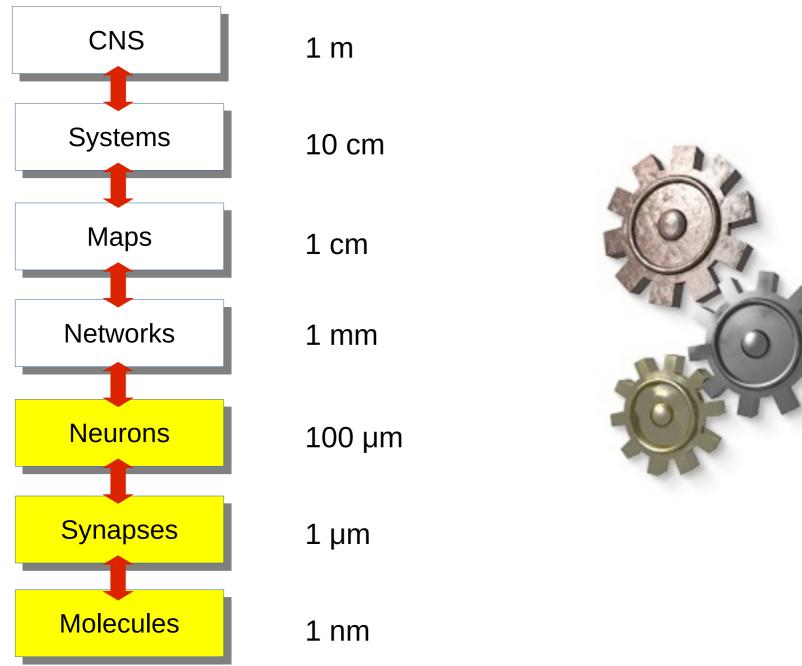
How does the brain work?

A physics/engineering approach

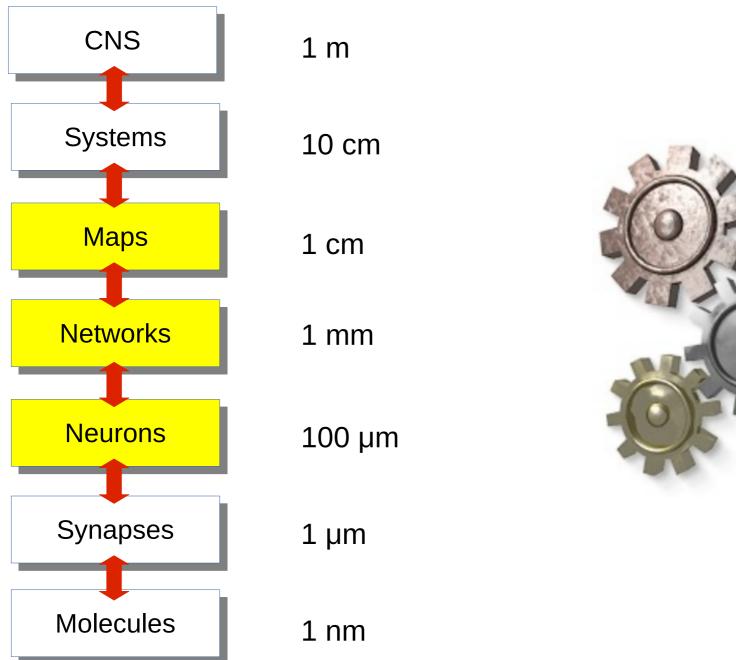
just rebuild the whole thing

reverse engineering the brain

The quest for mechanisms: Constructing the systems from parts



The quest for mechanisms: Constructing the systems from parts



Lecture outline:

Introduction to Computational Neurosciences

1. Introduction:

- A couple of brain questions

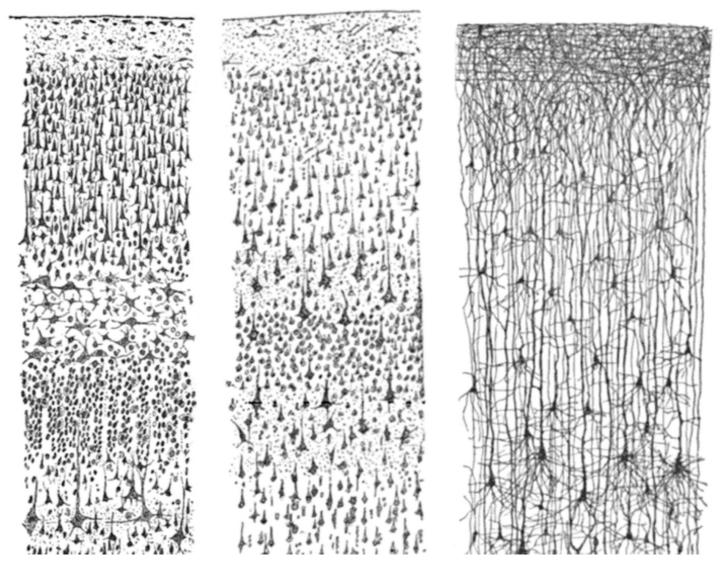
2. The Neuron:

- Hodgkin-Huxley model
- Integrate-and-Fire model
- Rate model
- Cable theory

3. Neural networks:

- Rate models
- Spiking neuron models
- Examples

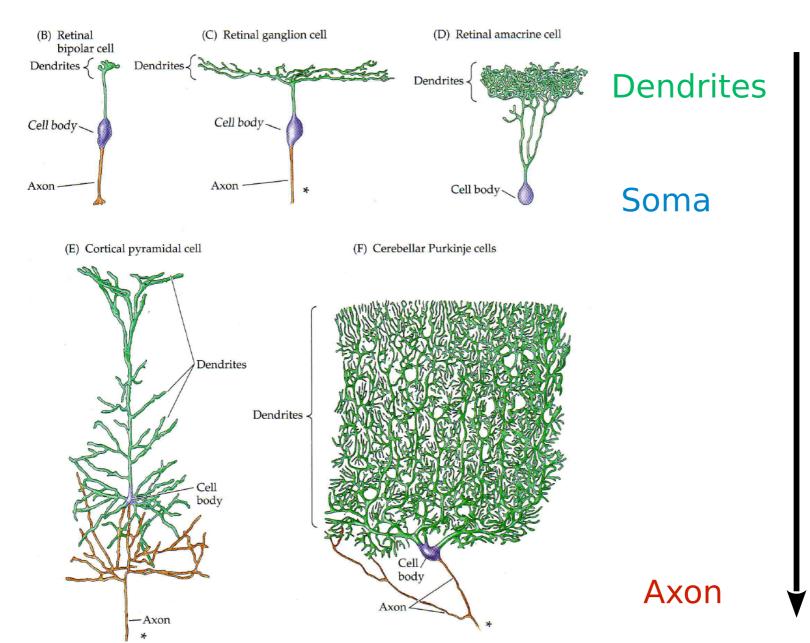
What does the hardware look like?



Ramon y Cajal (Nobel Prize 1906) Joseph von Gerlach (1871), Camillo Golgi

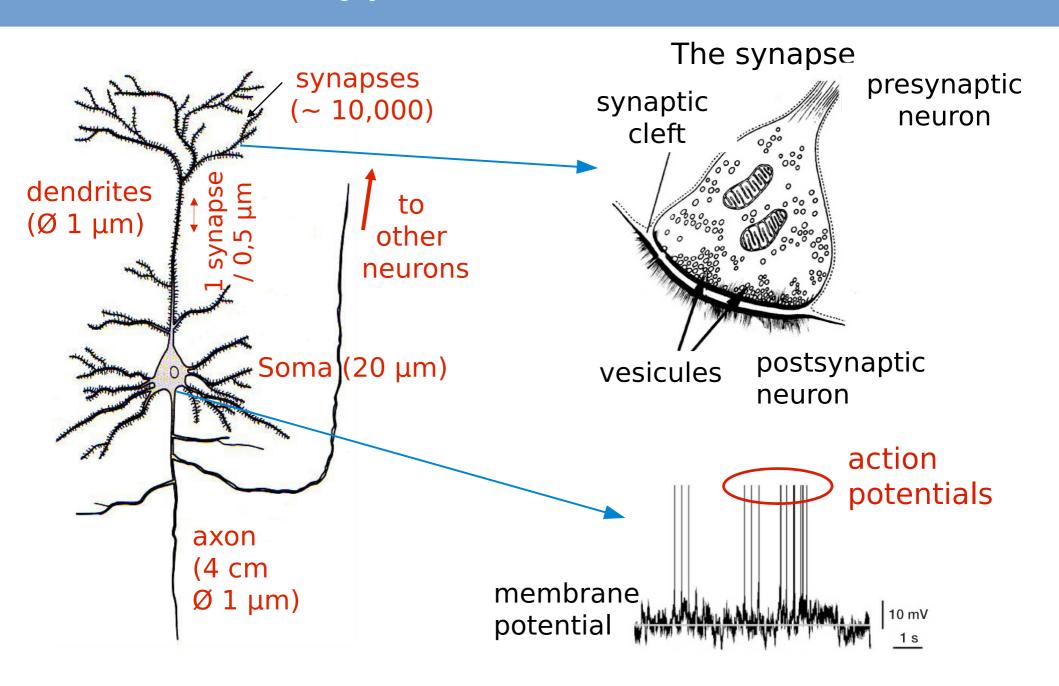
neuron doctrine Reticular theory

Neurons = basic units of computation

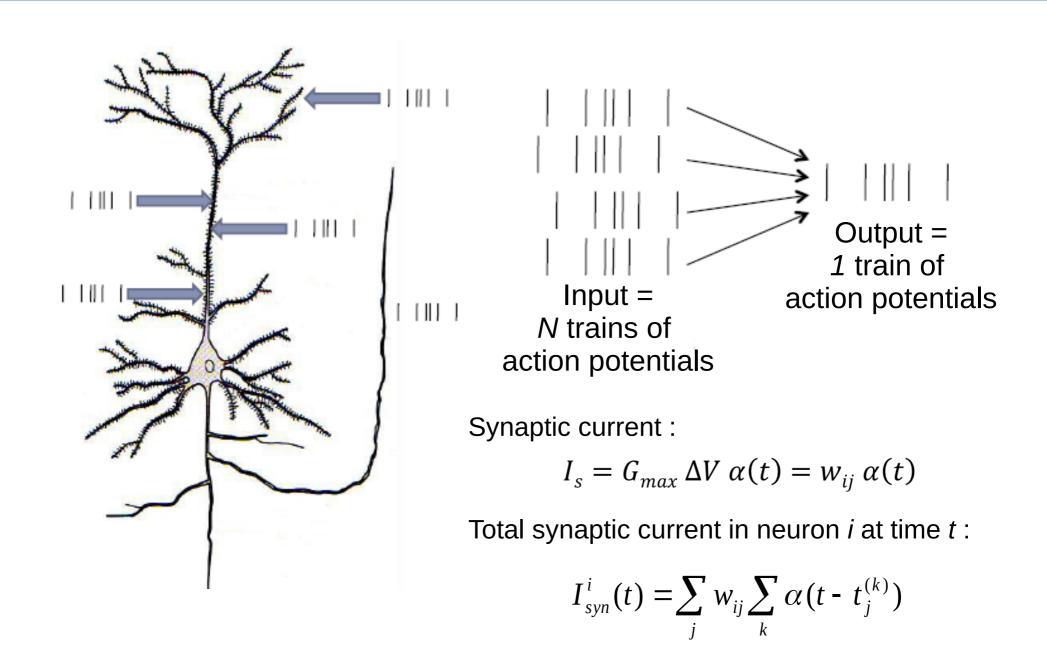


information flow

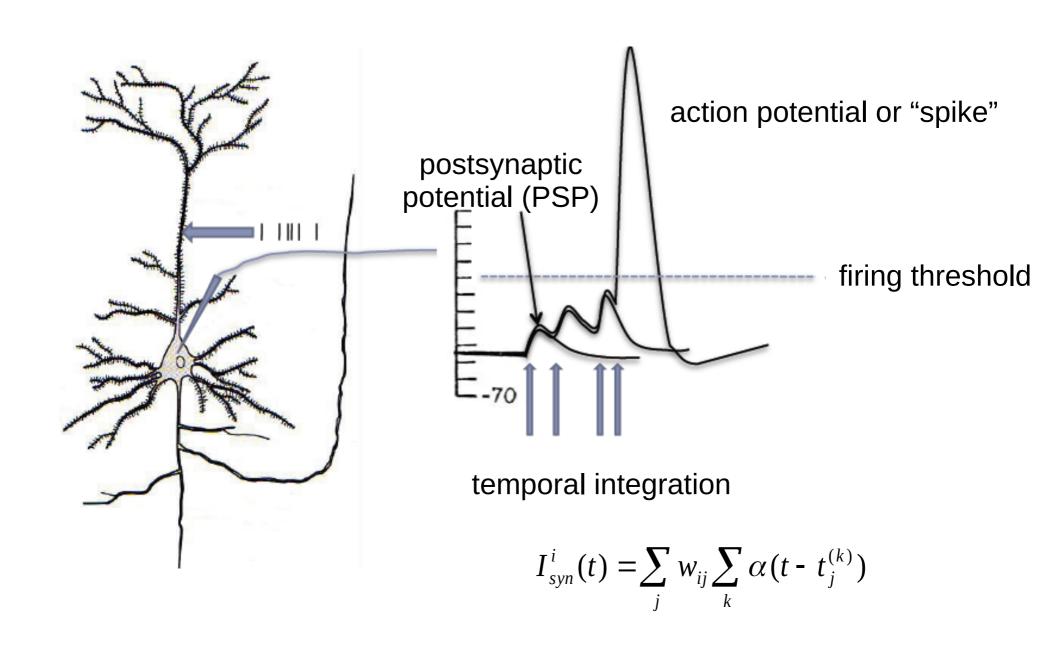
The typical cortical neuron



Neural integration



Neural integration



Single neuron models

→ Hodgkin Huxley model : description of ion channel dynamics (Hodgkin & Huxley,

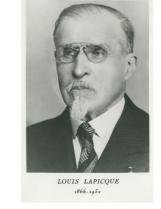
1952)

Hodgkin

Huxley

→ integrate-and-fire model: description of input integration membrane potential dynamics (LaPicque, 1907)

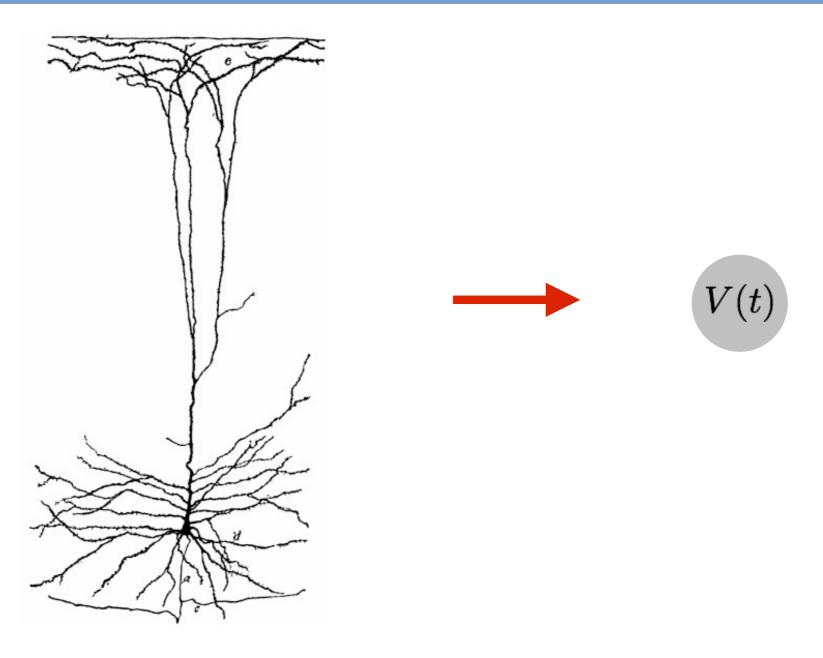
→ rate model: description of the mean firing rate dynamics



→ cable theory: description of input propagation along the dendrites (Rall, 1962)

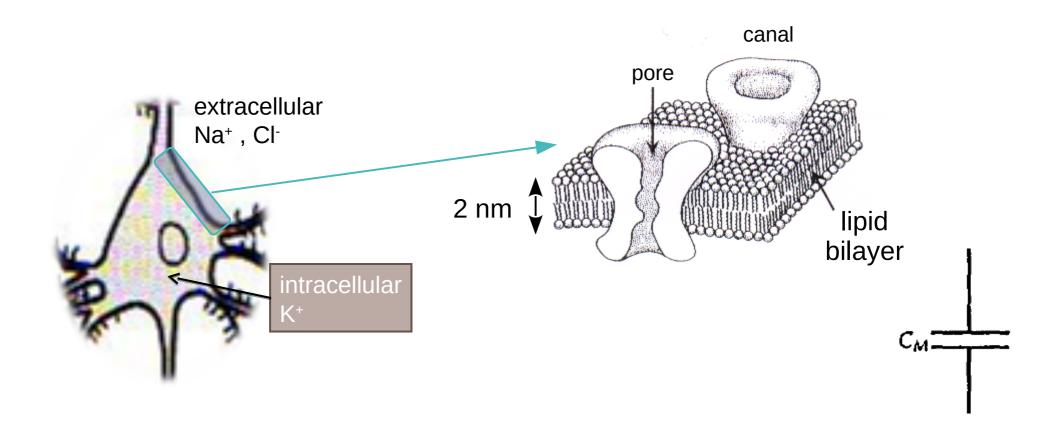
Wilfrid Rall

simplified single neuron : single compartment model



The membrane

Lipid bilayer (= capacitance) with pores (channels = proteines)



specific capacitance 1 $\mu F/cm^2$ total specific capacitance = specific capacitance * surface

Physics reminder

Ohm's law:

The current flowing through a resistor is directly proportional to the voltage drop across the resistor.

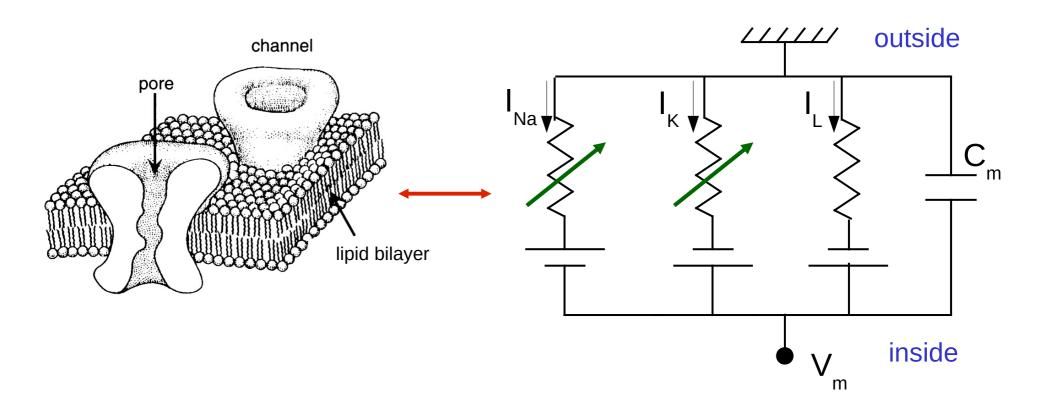
$$I = \frac{V}{R} \qquad R = \frac{1}{g}$$

Kirchoff's law:

The sum of currents flowing into a point is equal to the sum of currents flowing out of that point..

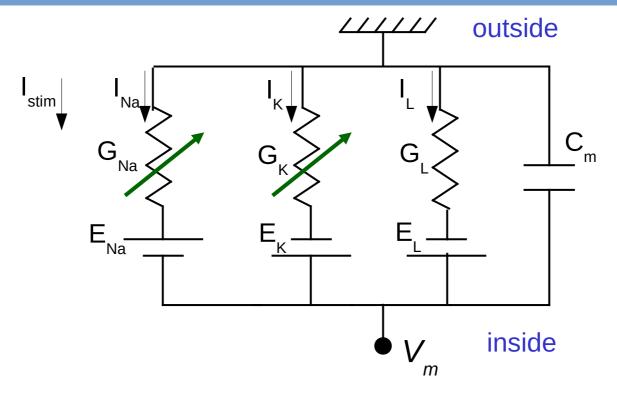
$$I_1 + I_2 + I_3 + \cdots = 0$$

Membrane properties : equivalent circuit



- \rightarrow The membrane potential V_m varies due to the opening/closing of different types of ion channels.
- → "Active membrane": Ion channel conductance varies with the membrane potential.

Hodgkin-Huxley model: membrane potential equation



Kirchhoff's law:

$$I_{stim} = I_{Na} + I_k + I_L + I_C$$

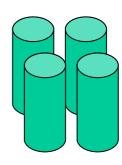
Ohm's law:

$$R = \frac{\Delta V}{I} \longrightarrow I = \frac{\Delta V}{R} = g(V_m - V_{rev})$$

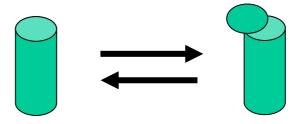
$$I_{stim} = g_{Na}(t)(V_m - V_{Na}) + g_K(t)(V_m - V_K) + g_L(V_m - V_L) + C\frac{dV_m}{dt}$$

Hodgkin-Huxley model: potassium channel

→ 4 similar sub-units



→ Each subunit can be « open » or « closed » :



→ The channel is « open » if and only if all the sub-units are « open »

Hodgkin-Huxley model: potassium channel

• probability that one sub-unit is « open »:

• probability that all sub-units are « open »:

$$n(t)^4$$

maximal K+ conductance, when all channels are open :

$$\overline{g}_K$$

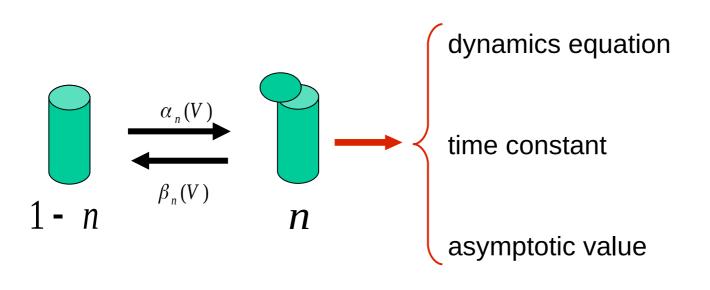
• K+conductance:

$$g_k = \overline{g}_K n(t)^4$$

$$C\frac{dV}{dt} = g_{Na}(t)(V_{Na} - V) + g_{K}(t)(V_{K} - V) + g_{L}(V_{L} - V) + I_{stim}$$

$$C\frac{dV}{dt} = g_{Na}(t)(V_{Na} - V) + \overline{g}_{K}n(t)^{4}(V_{K} - V) + g_{L}(V_{L} - V) + I_{stim}$$

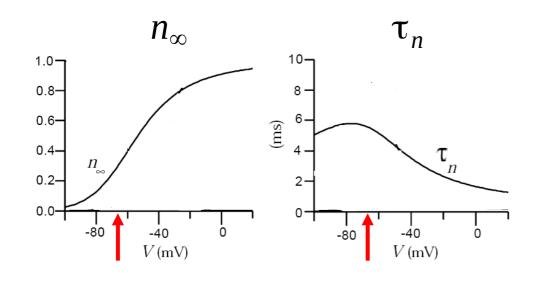
Hodgkin-Huxley model: potassium channel



$$\tau_{n} \frac{dn}{dt} = -n + n_{\infty}$$

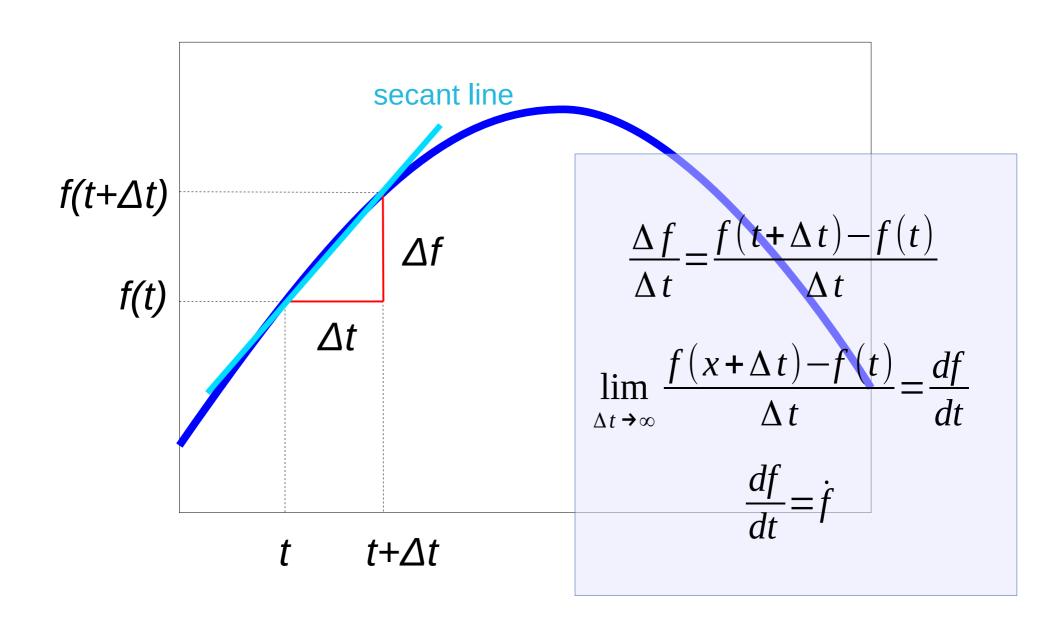
$$\tau_{n} = \frac{1}{\alpha_{n} + \beta_{n}}$$

$$n_{\infty} = \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}}$$



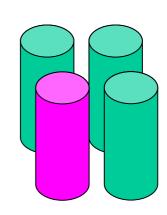
→ The potassium channel is closed at resting potential.

Math reminder : difference quotient

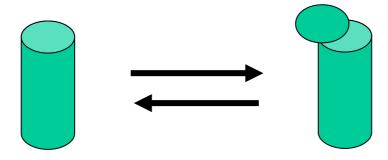


Hodgkin-Huxley model: sodium channel

 The sodium channel has 3 similar « fast » esubunits and 1 « slow » subunit



Each sub-unit can be « open » or « closed »



→ The channel is « open » if and only if all the sub-units are « open »

modèle Hodgkin-Huxley : canal de sodium

Probability that the « fast « sub-unit is « open » :

m

Probability that the « slow » sub-unit is « open » :

h

• Probability that the channel is « open »:

 m^3h

• Maximal Na+ condutance, when all channels are open :

 $\overline{g}_{\scriptscriptstyle Na}$

Na+ conductance :

$$g_{Na} = \overline{g}_{Na} m^3 h$$

$$C\frac{dV}{dt} = g_{Na}(V_{Na} - V) + g_{K}(V_{K} - V) + g_{L}(V_{L} - V) + I_{ext}$$

$$C\frac{dV}{dt} = \overline{g}_{Na} m^3 h(V_{Na} - V) + \overline{g}_K n^4 (V_K - V) + g_L(V_L - V) + I_{stim}$$

modèle Hodgkin-Huxley : canal de sodium

dynamics of the of the fast sub-unit

$$\tau_{m} \frac{dm}{dt} = -m + m_{\infty}$$

$$\tau_{m} = \frac{1}{\alpha_{m} + \beta_{m}}$$

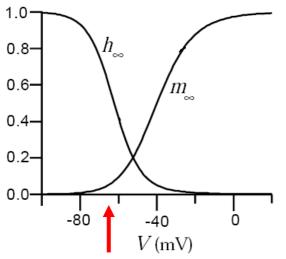
$$m_{\infty} = \frac{\alpha_{m}}{\alpha_{m} + \beta_{m}}$$

dynamics of the slow sub-unit:

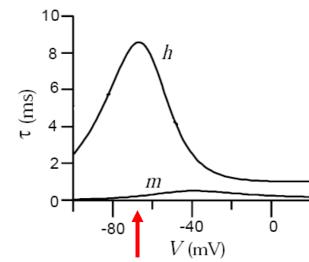
$$\tau_h \frac{dh}{dt} = -h + h_{\infty}$$

$$\tau_h = \frac{1}{\alpha_h + \beta_h}$$

$$h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}$$



time constants



- → The fast sub-unit is closed at resting potential.
- → The slow sub-unit is open at resting potential.
- → The sodium channel is closed at resting potential.

Complete equations of the Hodgkin-Huxley model

$$C\frac{dV}{dt} = \overline{g}_{Na} m^3 h(V_{Na} - V) + \overline{g}_K n^4 (V_K - V) + g_L (V_L - V) + I_{stim}$$

$$\tau_{n} \frac{dn}{dt} = -n + n_{\infty} , \tau_{n} = \frac{1}{\alpha_{n} + \beta_{n}}, n_{\infty} = \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}}$$

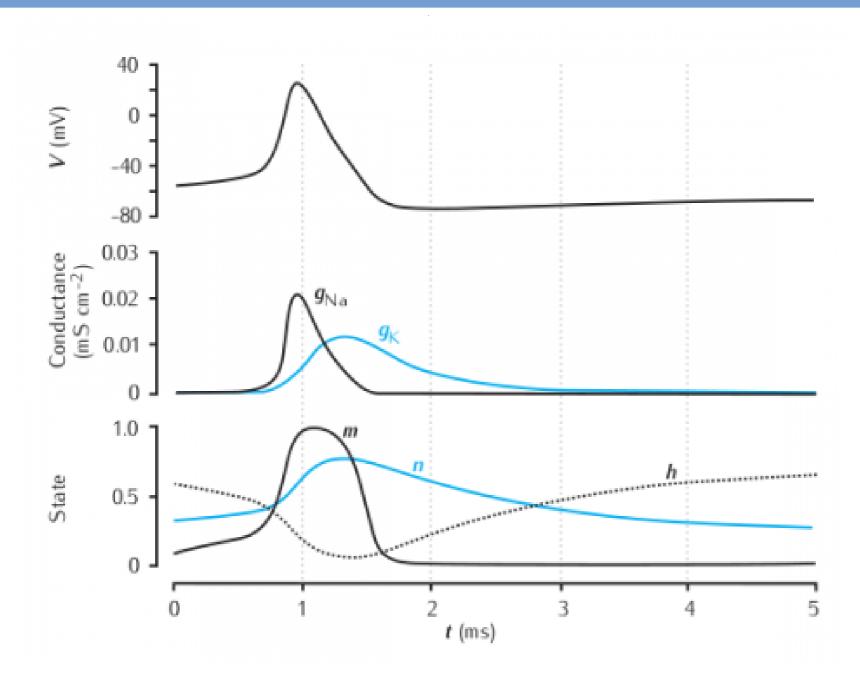
$$\tau_{m} \frac{dm}{dt} = -m + m_{\infty} , \tau_{m} = \frac{1}{\alpha_{m} + \beta_{m}}, m_{\infty} = \frac{\alpha_{m}}{\alpha_{m} + \beta_{m}}$$

$$\tau_{h} \frac{dh}{dt} = -h + h_{\infty} , \tau_{h} = \frac{1}{\alpha_{h} + \beta_{h}}, h_{\infty} = \frac{\alpha_{h}}{\alpha_{h} + \beta_{h}}$$

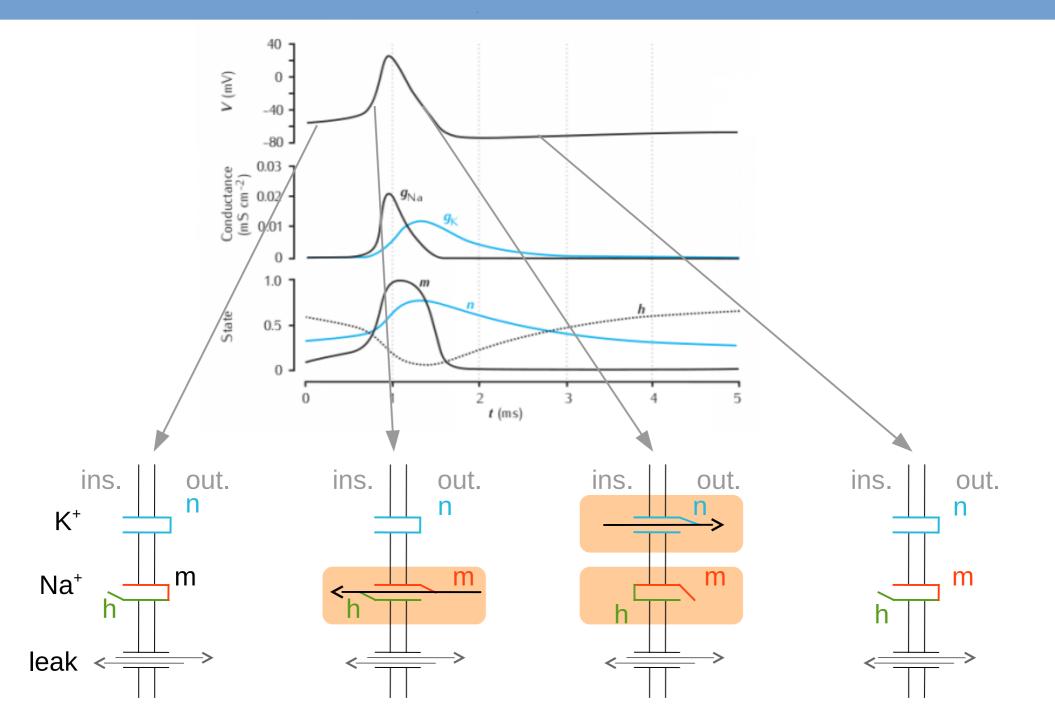
$$\alpha_{n}(V) = \frac{(0.1 - 0.01V)}{e^{1 - 0.1V} - 1} \qquad \alpha_{m}(V) = \frac{(2.5 - 0.1V)}{e^{2.5 - 0.1V} - 1} \qquad \alpha_{h}(V) = 0.07 e^{-\frac{V}{20}}$$

$$\beta_{n}(V) = 0.125e^{-\frac{V}{80}} \qquad \beta_{m}(V) = 4e^{-\frac{V}{18}} \qquad \beta_{h}(V) = \frac{1}{e^{3 - 0.1V} + 1}$$

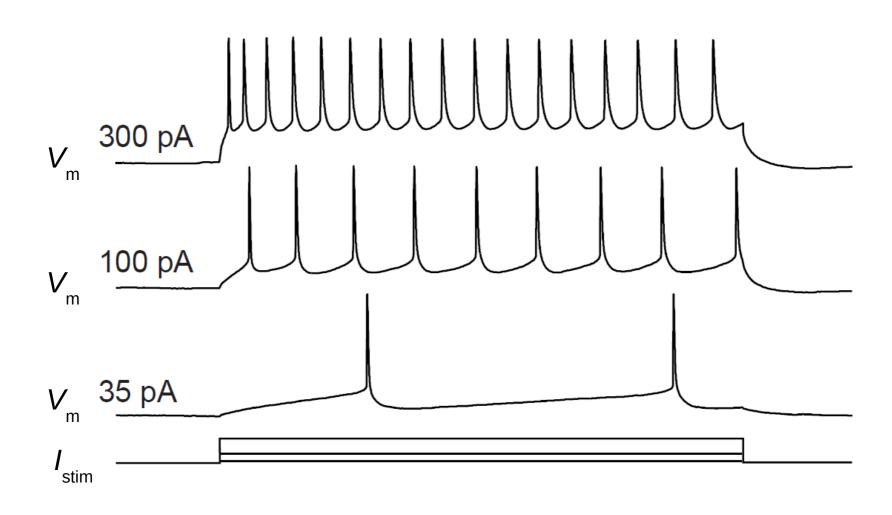
Hodgkin-Huxley model: the action potential



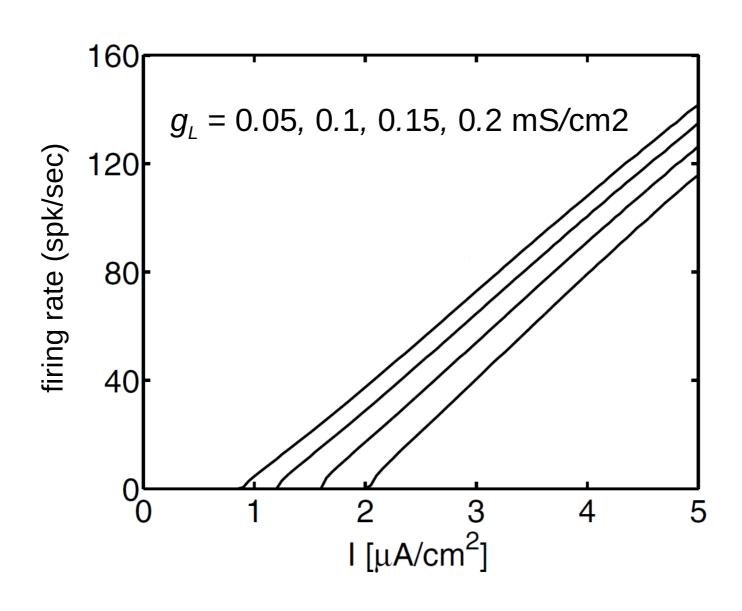
Hodgkin-Huxley model: the action potential



Hodgkin-Huxley model: current injection



Hodgkin-Huxley model: F-I curve



Integrate-and-Fire model: derivation

simplification: no active currents

$$g(t) = const$$
.

→ The shape of the action potential is not described!

$$C \frac{dV}{dt} = g_{Na}(V_{Na} - V) + g_{K}(V_{K} - V) + g_{L}(V_{L} - V) + I_{stim}$$

$$C\frac{dV}{dt} = g_{Na}V_{Na} + g_{K}V_{K} + g_{L}V_{L} - (g_{Na} + g_{K} + g_{L})V + I_{stim}$$

$$C\frac{dV}{dt} = G_{tot}(V_{0} - V) + I_{stim}$$

$$\tau = \frac{C}{G_{tot}}$$

$$\tau \frac{dV}{dt} = (V_{0} - V) + \frac{I_{stim}}{G_{tot}}$$

Integrate-and-Fire model : membrane potential equation

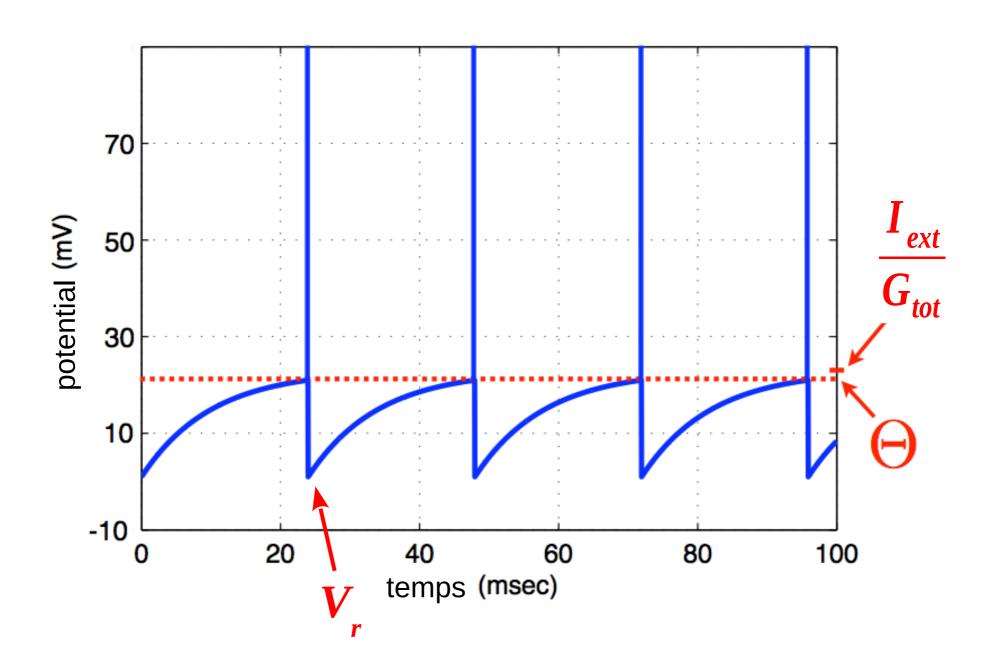
$$\tau \frac{dV}{dt} = (V_0 - V) + \frac{I_{ext}}{G_{tot}}$$

- V_0 resting membrane potential
- τ membrane time constant
- I_{ext} external current (synaptic)
- G_{tot} total conductance

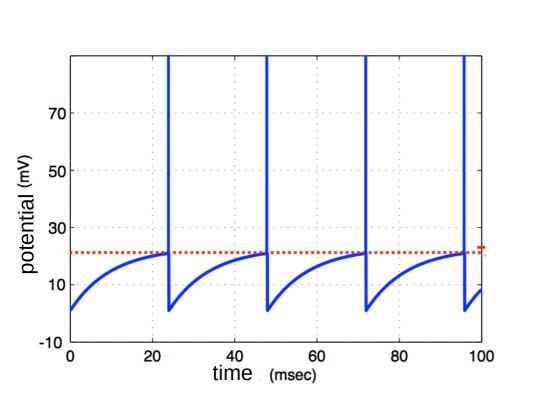
generation of the action potential:

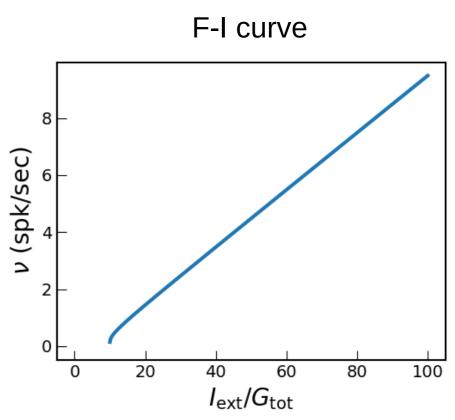
- Θ firing threshold
- V_r reset potential
- if *V>Θ* :
 - → the neuron fires an action potential
 - \rightarrow after the action potential, the membrane potential is reset to V_r

Integrate-and-Fire model: dynamics



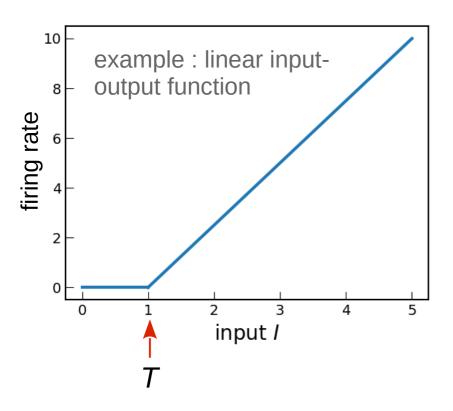
Integrate-and-Fire model: dynamics





Rate model

Phenomenological description of the input-output function:



$$\tau \frac{dm}{dt} = -m + F(I_{syn} + I_{ext} - T)$$

m: output of the neuron – firing rate

 τ : membrane time constant

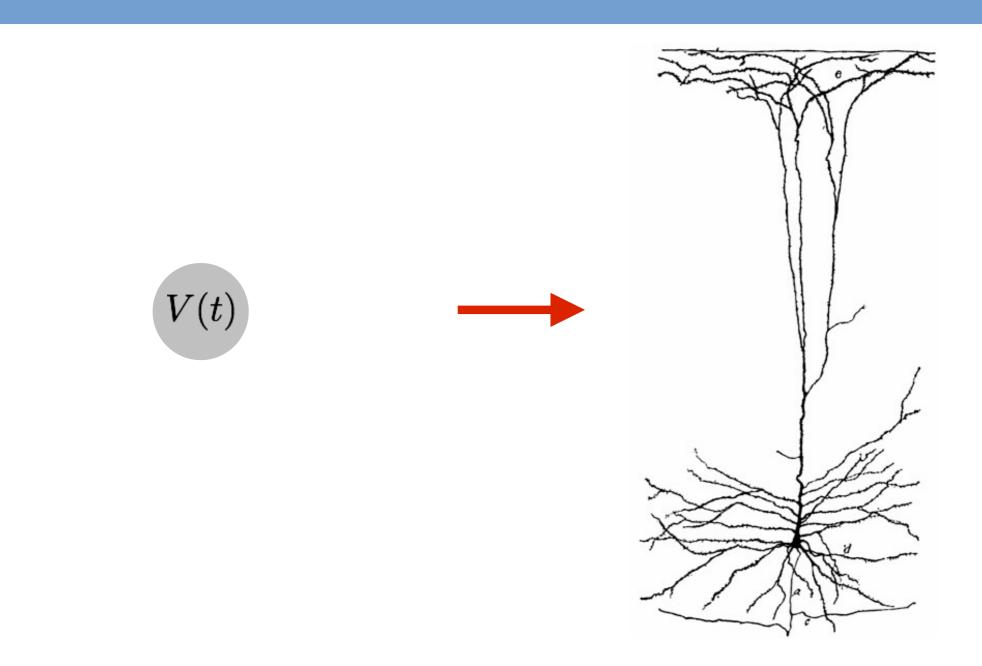
F: input-output transfer function

 I_{syn} : synaptic input

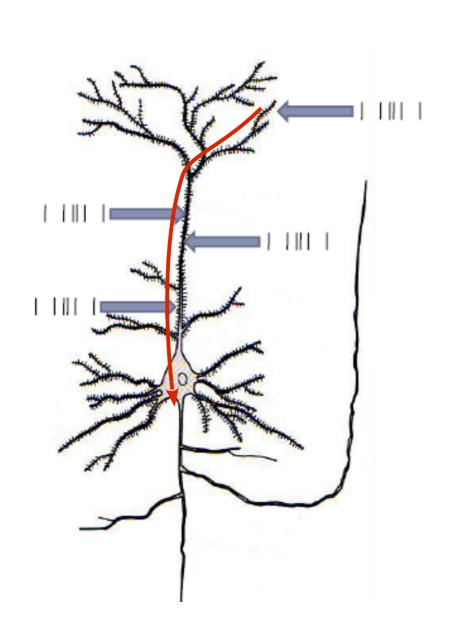
 I_{ext} : external current

T: firing threshold

How do potentials propagate along the dendritic tree?

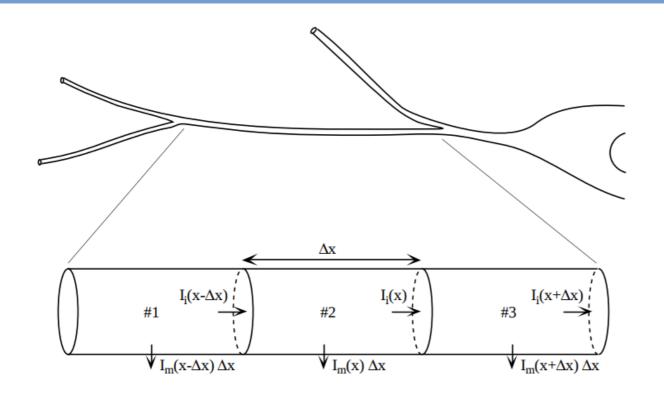


Cable theory



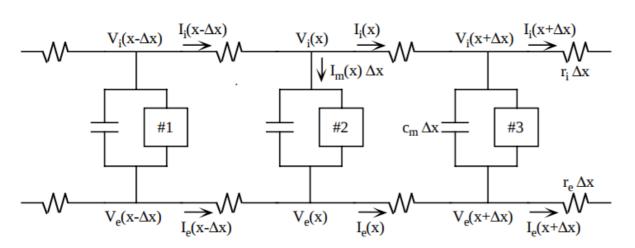
- how do synaptic inputs propagate to the soma or the axon initial segment
- how do input interact between each other
- how does the input location along the dendritic tree impact its functional importance for the neuron

Abstraction of the dendritic membrane of a neuron



Soma and dendritic branch

Portion of the secondary dendrite divided in three sub-cylinders



Discrete electric model of the three sub-cylinders

Non-linear cable equation

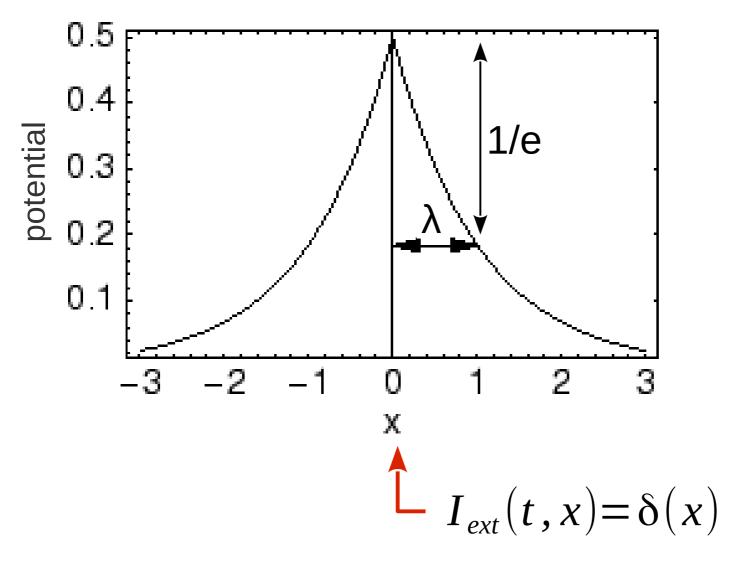
models the membrane potential distribution along a membrane cylinder

$$V(t) \longrightarrow V(x,t)$$

$$\frac{1}{r_i + r_e} \frac{\partial V}{\partial x^2} = c_m \frac{\partial V}{\partial t} + I_{ion}$$

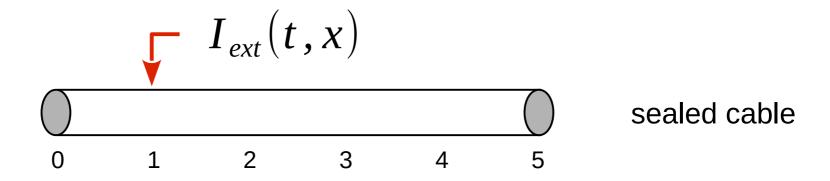
current which propagates between neighboring points along the cylinder typical membrane potential equation of the point neuron model

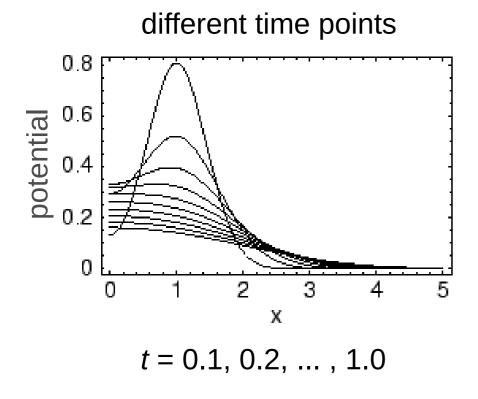
Stationary solution of the cable equation

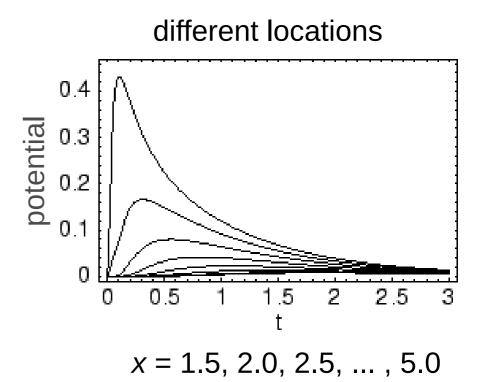


 λ length constant

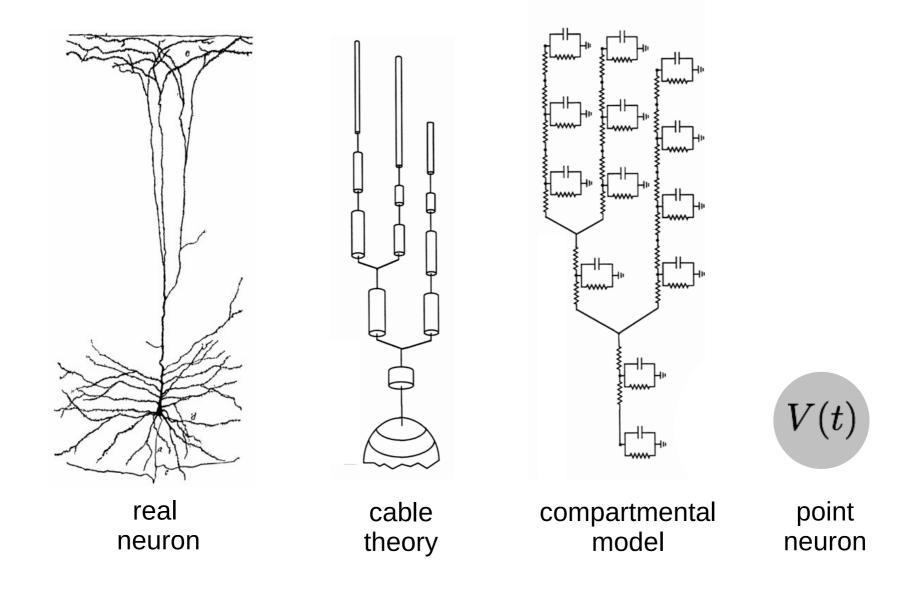
Spatial and temporal distribution of the potential along the membrane



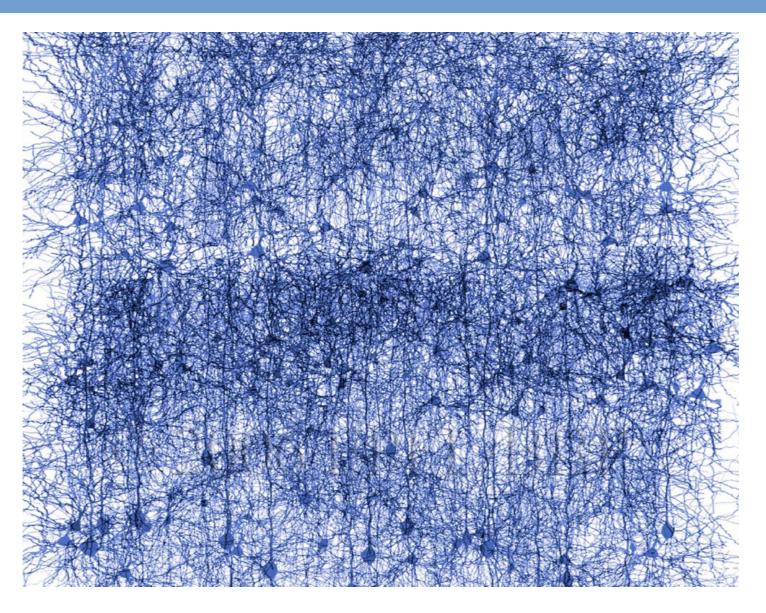




Single neuron models

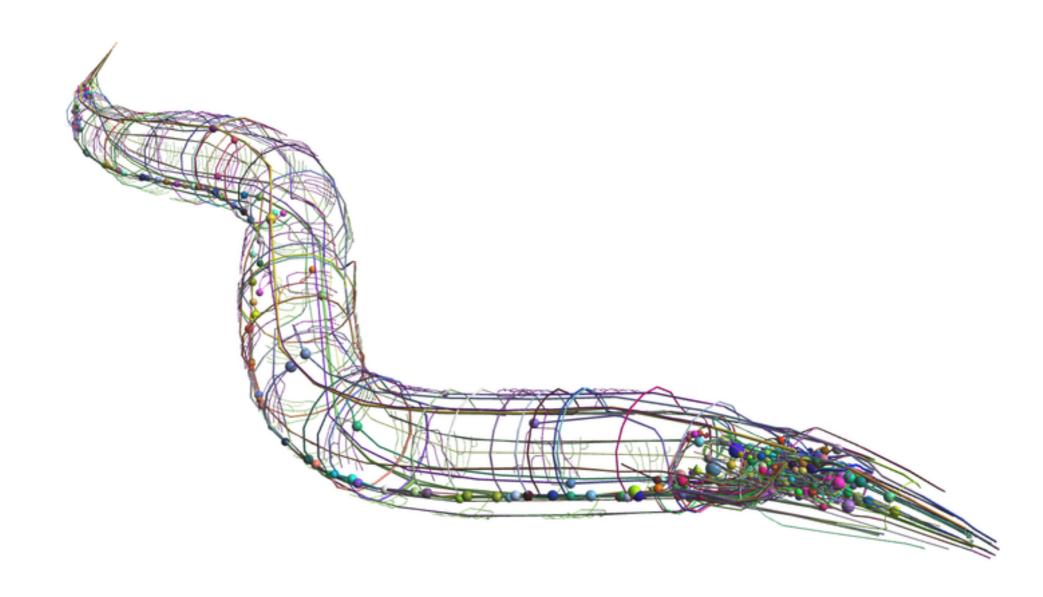


Neurons form networks



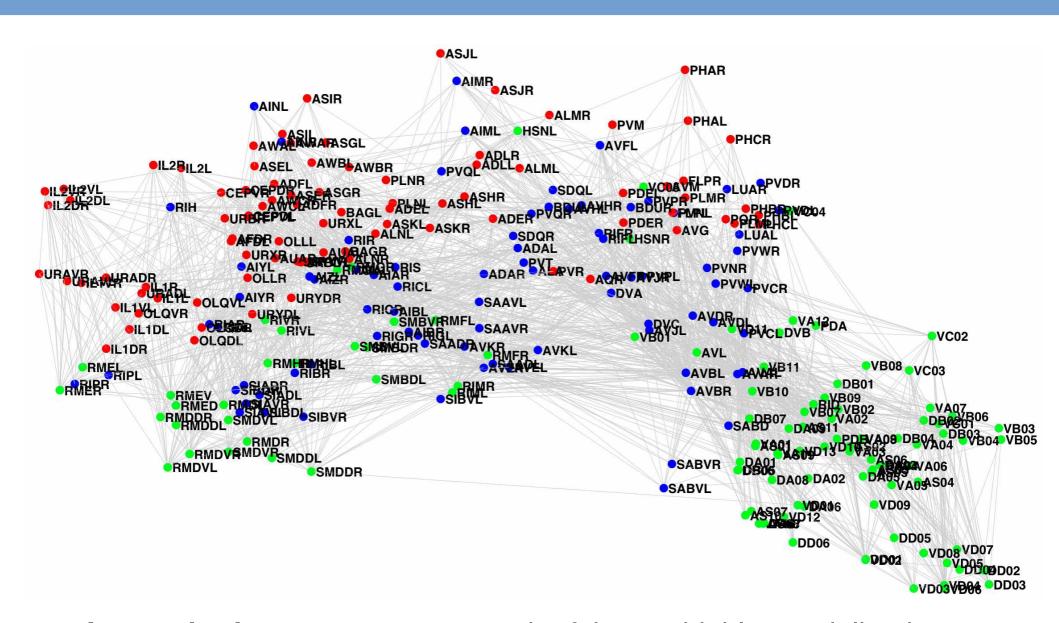
The brain: a network of 10^{11} neurons connected by 10^{15} synapses

C elegans : brain network



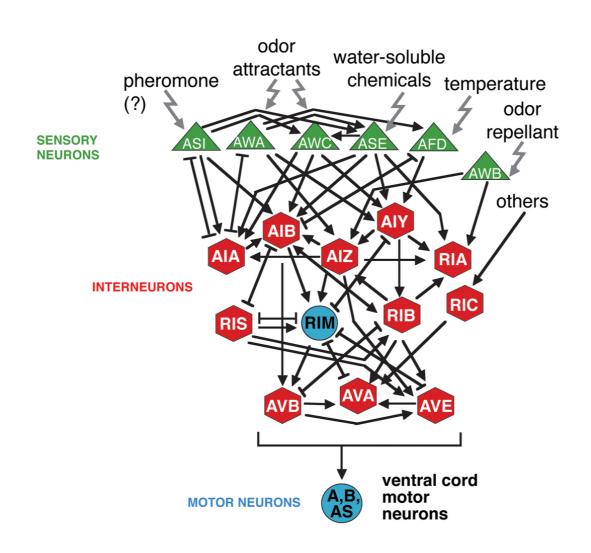
C elegans brain: 302 neurons

C elegans : brain network



C elegans brain: 302 neurons – each of them a highly specialized analog computer

Brain network: from sensory to motor

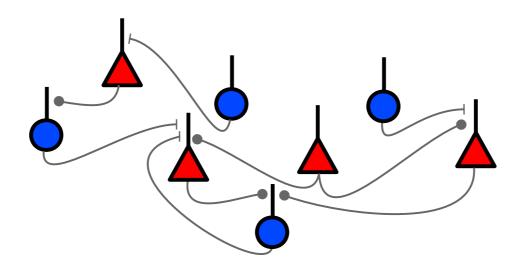


Two classes of neural network models

- Rate models (neural mass models):
 describe the activity of a whole
 population of neurons by a single
 'average firing rate' variable: m(x, t)
- Networks of spiking neurons: describe the activity of a population of *N* neurons coupled through network connectivity matrix by *O(N)* coupled differential equations.

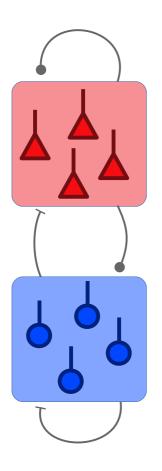
Network models: rate vs. spiking neural network

réseau neuronal



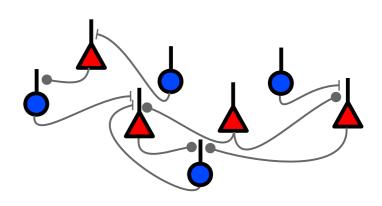
Network models: rate vs. spiking neural network

Rate model



groups of similar neurons are grouped together

Spiking neuron model

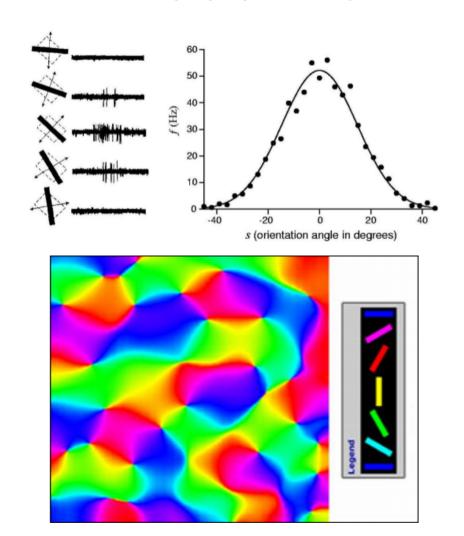


each individual neuron is described

Rate models: spatial selectivity

In many brain regions, neighboring neurons share similar selectivity to external inputs

→ There is a topographical organization of selectivity.



Example : In many areas of the brain, neurons show selectivity to spatial variables:.

- Primary visual cortex : orientation
- MT : direction of movement
- Posterior parietal cortex, prefrontal cortex: spatial location (present and past)
- **FEF**: location of a saccade
- Motor cortex: direction of arm

. . .

What are the mechanisms of spatial selectivity?

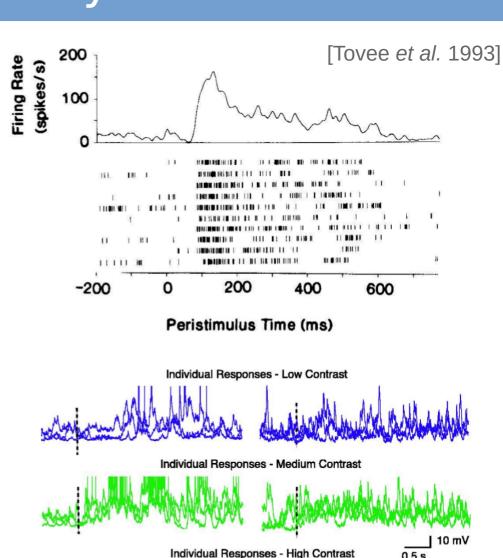
Networks of spiking neurons: irregularity

Spontaneous vs. selective/evoked activity:

- Spontaneous activity: 1-20 spk/s
- In presence of external stimuli: in many parts of cortex, instantaneous firing rate (PSTH) depends on (carries information about) external stimuli.

Statistics of neural activity:

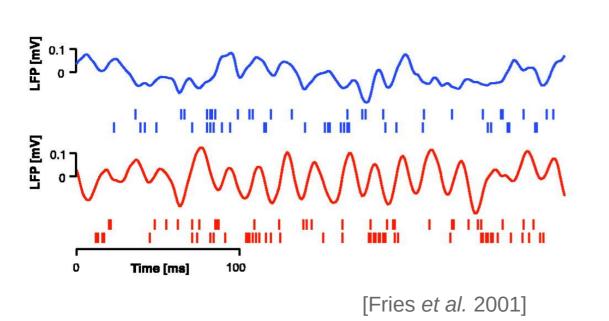
- very irregular firing (close to Poisson process – CV close to 1)
- Large membrane potential fluctuations (~ 5mV)
- What are the mechanisms of irregular activity?

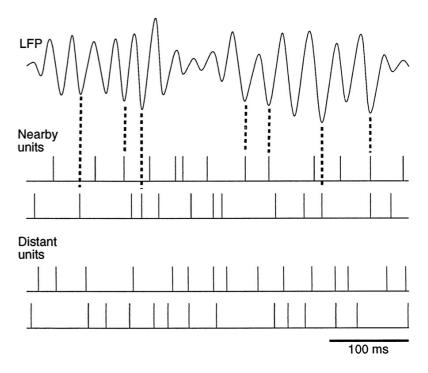


[Anderson et al. 2000]

Networks of spiking neurons: oscillations

- LFP recordings : reflect local network activity
- Various oscillatory patterns in wake and sleep



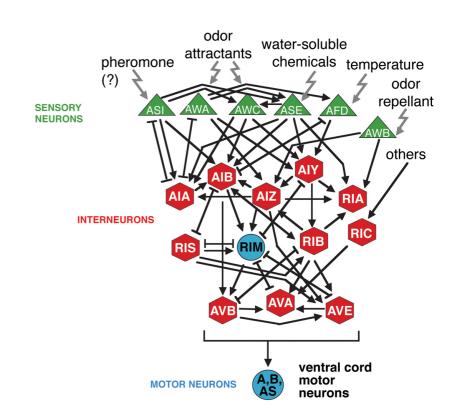


[Destexhe et al. 1999]

→ What are the mechanisms of synchronized oscillations?

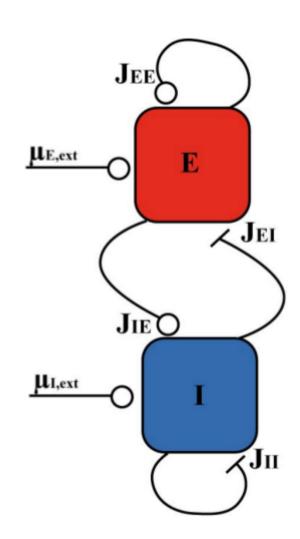
Network models: parts list

- How many neuron types?
 How many neurons of each type?
- How are the neurons connected (What is the connectivity matrix)?
- What are the external inputs?
- What is(are) the neuron model(s)?
- What is(are) the synapse model(s)?



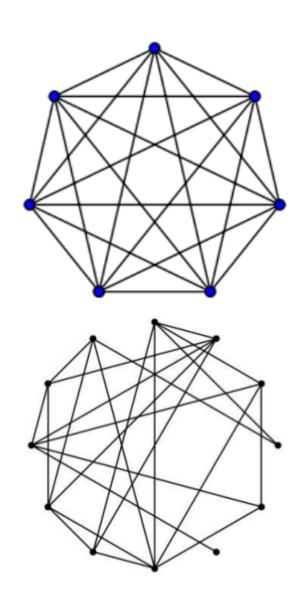
Types and numbers of neurons

- How many types of neurons? How many neurons in each type?
 - Depends on the system modeled
 - Classic example :Two population cortical network (E-I)
 - Numerical simulations: N ~ 10³-10⁴
 (single workstations), much more
 (clusters, dedicated supercomputers)
 - Analytical calcuations : *N* → ∞



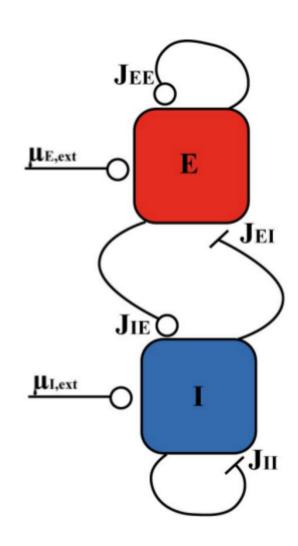
Connectivity matrix

- How are neurons connected (what is the connectivity matrix)?
 - Fully connected (all-to-all)
 - Randomly connected (par ex. Erdos-Renyi)
 - Spatial structure
 - With a structure imposed by learning



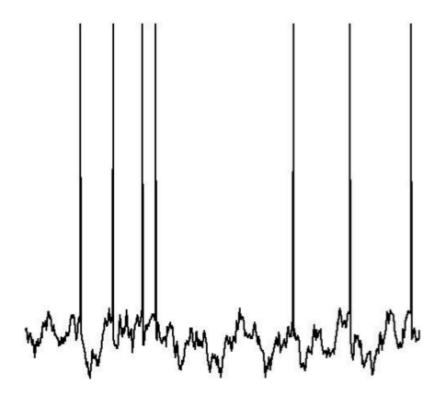
External inputs

- What are the external inputs?
 - Constant
 - Stochastic (e.g. independent Poisson processes; independent white noise)
 - Temporally/spatially structured



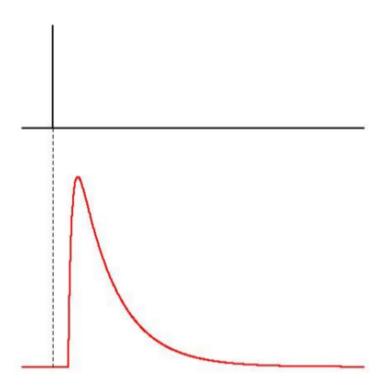
Neuron models

- What is(are) the neuronal model(s)?
 - Binary
 - Spiking (LIF, NLIF, HH-type, etc. ...)



Synapse models

- What is(are) the synapse model(s)?
 - Fixed number (synaptic weight, binary networks)
 - Temporal kernel (spiking networks)
 - Non-plastic vs. plastic



Questions

- Dynamics: What are the intrinsic dynamics of networks (spontaneous activity, in the absence of structured inputs)?
- **Coding:** What is the effect of external inputs on network dynamics? How do networks encode external inputs?
- Learning and memory: How are external inputs learned/memorized?
 - How do external inputs modify network connectivity through synaptic plasticity? How is learning implemented?
 - What is the impact of structuring in the connectivity on network dynamics?
- Computation: How do networks perform computations?

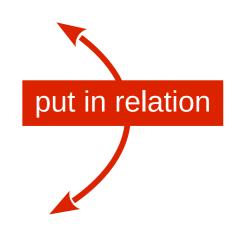
How to investigate a neural network model's behavior?

1st **Step:** a simplified network for mathematical analysis

- Simple neuron model (rate model with linear transfer function, or Integrate-and-Fire model)
- All-to-all connectivity or simple connectivity scheme (Gaussian)
- No noise, no heterogeneity

Étape 2 : numerical simulations of a more "realistic" model

- "Realistic" neuron model (non-linear input-output function, H&H, conductance-based currents ...)
- "Realistic" connectivity scheme (with some randomness)
- Synaptic noise
- Heterogeneity in the single neuron parameters (threshold, gain, conductances, ...)



Rate model

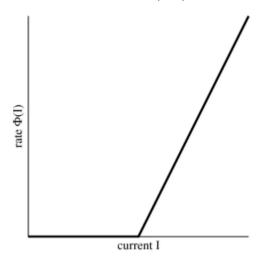
• In a 'rate model' (also called: 'firing rate model', 'neural mass model', neural field model', 'Wilson-Cowan model'), one describes the activity (instantaneous firing rate) of a population of neurons at a given location by a single analog variable:

$$\tau \dot{r}(x,t) = -r(x,t) + \Phi \Big[I(x,t) + \int dy J(|x-y|) r(y,t) \Big]$$

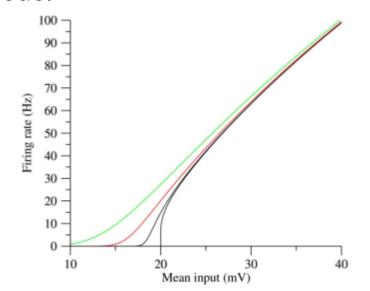
- τ : time constant of firing rate dynamics
- r(x, t): firing rate of neurons at location x at time t
- Φ (.): transfer function (f-I curve)
- *I* (*x*, *t*) : external input
- J(x, y): strength of synaptic connections between neurons at locations x and y

The transfer function Φ (.)

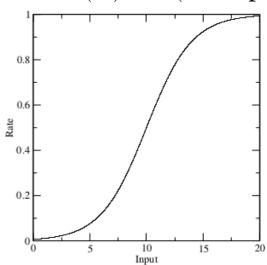
Threshold linear $\Phi(x) = [x - T]_+$



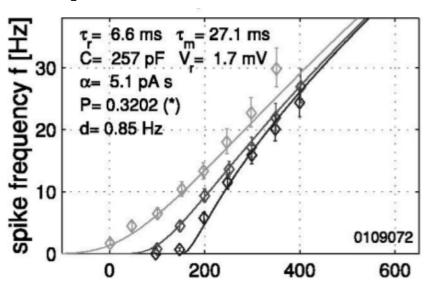
f-I curve of a specific spiking neuron model



Sigmoidal $\Phi(x)=1/(1+\exp(-\beta(x-T)))$



f-I curve of a real neuron [Rauch et al 2003]

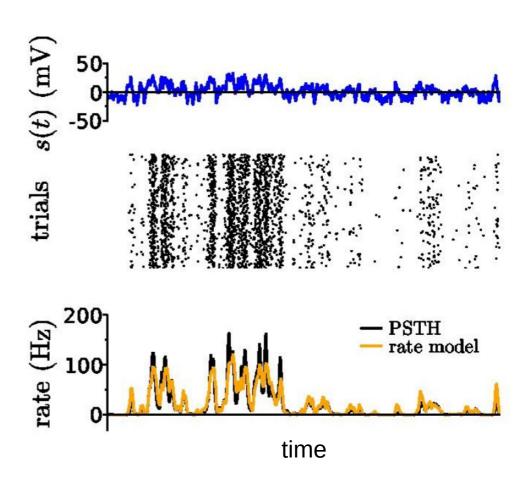


From populations of individual neurons to a rate model

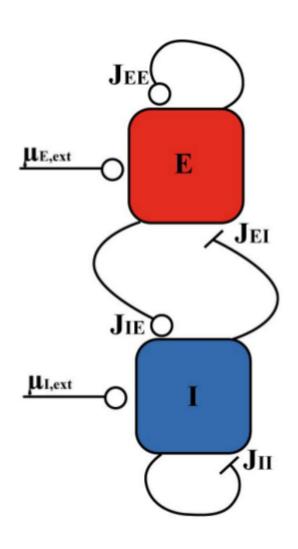
The population activity of homogeneous populations of

- Stochastic binary neurons
- Stochastic spiking neurons (EIF) can sometimes be shown to be well approximated by firing rate equations

$$\tau \frac{dr}{dt} = -r(t) + \Phi(I(t) + Jr(t))$$



Rate models of local networks of neurons



• n sub-populations described by their average firing rate r_i , i = 1, ..., n

$$\tau_i \dot{r}_i = -r_i + \Phi_i \left(I + \sum_j J_{ij} r_j \right)$$

• Example : E-I network (Wilson and Cowan 1972)

$$\tau_{E} \dot{r_{E}} = -r_{E} + \Phi_{E} (I_{EX} + J_{EE} r_{E} - J_{EI} r_{I})$$

$$\tau_I \dot{r_I} = -r_I + \Phi_I \left(I_{IX} + J_{IE} r_E - J_{II} r_I \right)$$

Analysis of rate models

$$\tau \dot{r} = -r + \Phi(I + J r)$$

Solve the equations for fixed point(s) :

$$r_0 = \Phi(I + Jr)$$

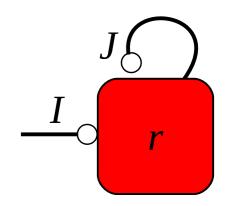
- Check linear stability of fixed points :
 - A small perturbation δr around the fixed point obeys the linearized dynamics

$$\dot{\delta}r = \frac{(-1 + \Phi' \mathbf{J})}{\tau} \delta r$$

- Compute eigenvalues λ of the Jacobian matrix (-1 + Φ **J**)
- Fixed point stable if all eigenvalues have negative real parts;
- "Rate" instability (saddle node bifurcation) when $\lambda = 0$
- Oscillatory instability (Hopf bifurcation) when $\lambda = \pm iw$ and $w\neq 0$

Simplest case: 1 population, linear Φ

$$\tau \dot{r} = -r + (I + J r)$$



- Unstable if J > 1 (' rate instability')
- Perfect integrator if J = 1:

$$r(t) = \frac{1}{\tau} \int_{0}^{t} I(t') dt'$$

• Stable if *J* < 1:

$$\frac{\tau}{(1-J)}\frac{dr}{dt} = -r + \frac{I}{(1-J)}$$

- Excitatory network (0 < J < 1): amplification of inputs, slow response
- Inhibitor network (J < 0): attenuation of inputs, fast response

Network dynamics of spiking networks

Binary networks

Spiking networks

• Neurons receive inputs (both from the outside and from the network itself)...

$$I_i = I_{iX} + \sum_j J_{ij} S_j(t)$$

$$I_{i} = I_{iX} + \sum_{j,k} J_{ij} S_{ij} (t - t_{j}^{k})$$

Neurons decide whether to be active or not, as a function of those inputs

$$S_i(t+dt) = \Theta(I_i(t)-T)$$

Membrane potential : $V_i(t)$

$$\tau_i \frac{dV_i}{dt} = -V_i + I_i(t)$$

Spike emitted whenever $V_i(t) = V_T$ After the spike, voltage is reset to V_R

Visualizing network activity

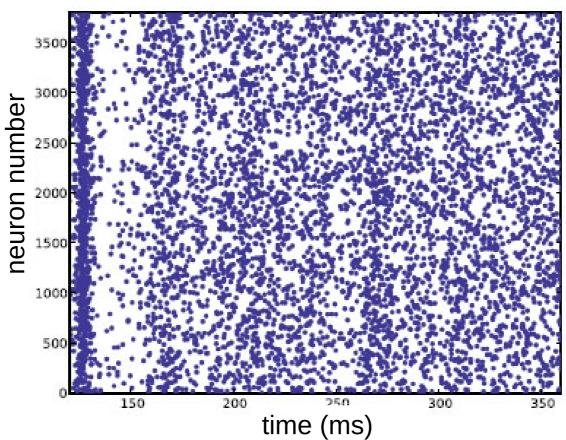
Binary network

Spiking network

Raster plot: spiking activity of whole network vs time

$$S_i(t) = 1,0$$

$$S_{i}(t) = \sum_{k} \delta(t - t_{i}^{k})$$



Firing rate

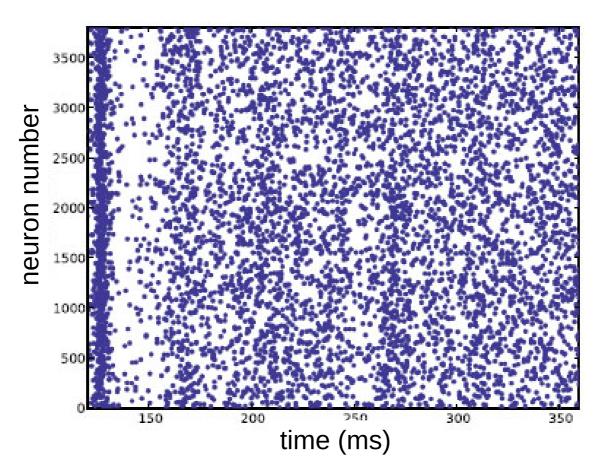
Binary network

Spiking network

• Averaging over time: average firing rates of single neurons

$$v_i = \frac{1}{T} \sum_i S_i(t) dt$$

$$v_i = \frac{1}{T} \int_0^T S_i(t) dt$$



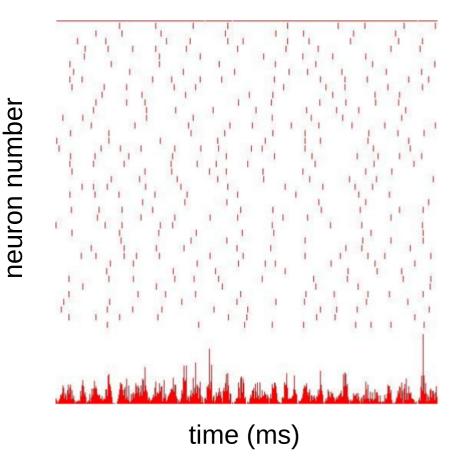
Population activity

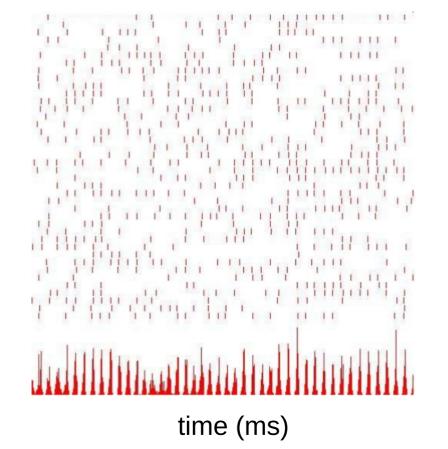
Binary networks

Spiking networks

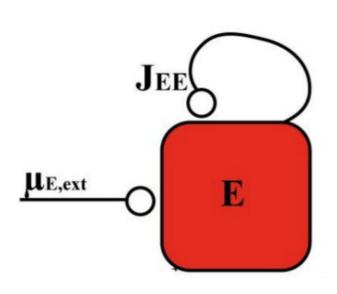
Averaging over neurons: instantaneous average rate (vs time)

$$v(t) = \frac{1}{N dt} \sum_{i} S_{i}(t)$$



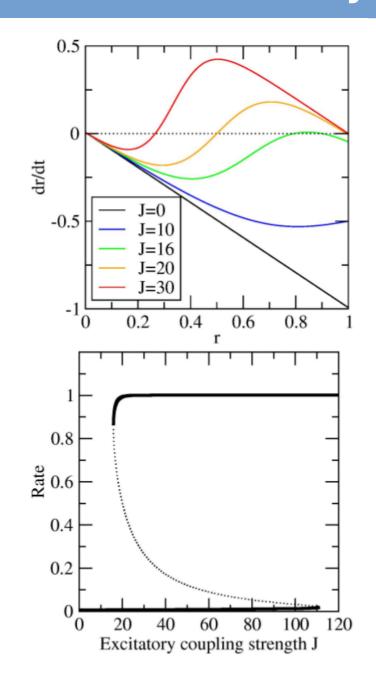


Example 1: E network rate model with bistability

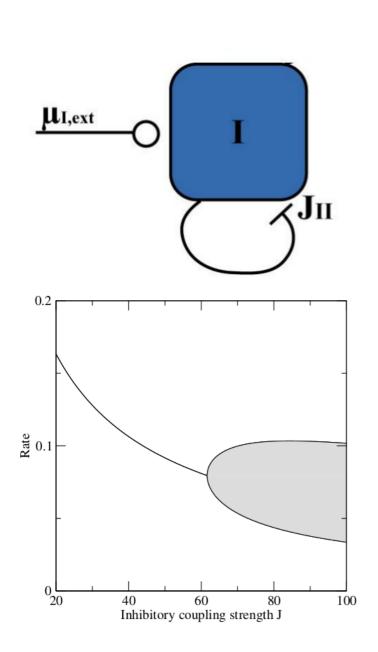


$$\tau \frac{dr}{dt} = -r + \Phi \left(I + Jr \right)$$

Sigmoidal transfer function Φ

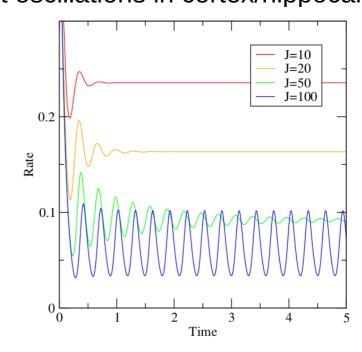


Example 2: I network rate model with delays - oscillations



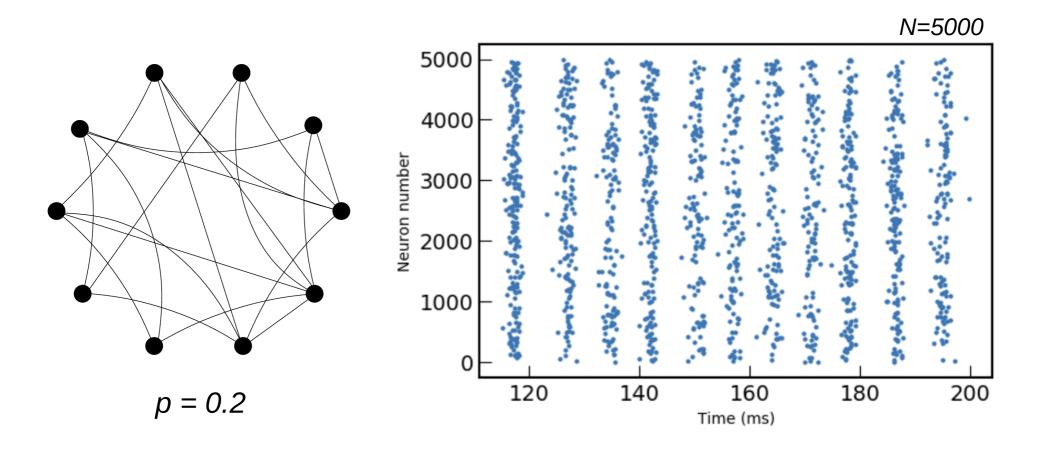
$$\tau \frac{dr_I}{dt} = -r_I + \Phi[I_{IX} - J_{II}r_I(t - D)]$$

- oscillations at a frequency f_c appear when $\widetilde{J}_{II} > J_c$
- For $D \ll \tau$, $J_c \sim \pi \tau/(2D)$, $f_c \sim 1/(4D)$
- Frequency controlled by synaptic delays
 ⇒ fast oscillations in cortex/hippocampus?



Example 2: I network rate spiking neuron model with delays - oscillations

- sparsely connected network of inhibitory integrate-and-fire neurons, delay D = 2 ms
- Individual neurons fire irregularly at low rates but the network exhibits an synchronized, oscillatory population activity



Statistics of spike trains

- Spike train (action potentials):
 - \rightarrow A sequence of spike times t^k
 - → A signal

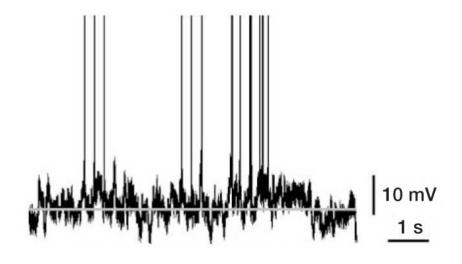
$$S(t) = \sum_{k} \delta(t - t^{k})$$

• Inter-spike interval (ISI):

$$ISI = t^{n+1} - t^n$$

- Firing rate :
 - → number of spikes / time
 - \rightarrow mean of S:

$$r = \langle S(t) \rangle = \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} S(t) dt$$



Statistics of spike trains

- Spike trains are irregular and vary from one trial to another :
 - → probabilistic description
- The statistics of cortical spike trains resemble a "Poisson process" :

