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Aim

 study brain activity during relevant tasks – tasks which the brain has evolved and 
optimized to deal with 

 explore brain function in its natural environment  

 record (neural activity) from the brain of an alive, awake animal performing a task 



Major challenge in neuroscience

neural circuits behavior

How do neural circuits encode, store, modify and retrieve information? 



Technical challenges

 access region/neurons of interest 

 assure animal's health and well-being 

 make the animal perform a task 

 perform stable recordings



Outline of the talk

1. Basics of in vivo imaging 
- parts list for imaging experiment
- challenges of deep tissue imaging 
- 1- vs. 2-photon imaging

2. Considerations of in vivo imaging in awake animals
- sensory modalities studied
- practical implementation : head-fixed vs. 'freely' moving
- virtual reality systems
- calcium vs. voltage imaging

3. Examples from ongoing research
- Cerebellum and motor control
- Presubiculum and head-direction neurons
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General parts list for in vivo imaging

Which general parts do we need if we want to record neural activity optically ? 
 



General parts list for in vivo imaging
 Light source: LED, laser, mercury vapor 

lamp,...

 Excitation filter: enables to select a
specific excitation range.

 Dichroic mirror: reflects wavelengths that are 
under/above a cutoff value and transmit 
wavelengths above this value.

 Objective : focuses light on region of interest 

 Sample : structure labeled with fluorophore

 Emission filter: enables to select fluorescent 
photons in a given range.

 Detector: camera, PMT, eye,...

light 
source

excitation 
filter

dichroic
mirror

emission
filter

detector

objective



Current method of choice : Calcium imaging using GECIs

● Genetically encoded calcium indicators (GECIs) can be targeted to specific neuron 
populations

● Calcium transients serve as proxy readout of neural activity

● Non-invasive and repeatable means to measure neural activity from large populations 
of neurons



Fluorescence induced by 1- or 2-photons

 Fluorescence: emission of light by the 
fluorophore that has absorbed light; 
emitted light has a longer wavelength, 
and therefore lower energy, than the 
absorbed radiation

fluorophore

1-photon 
excitation

2-photon 
excitation



Challenge: optical access to tissue to be imaged 
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excitation 
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emission
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thick biological tissue



Optical access through chronic window
 Transparent window implanted in place of 

skull over region of interest : 
maximal achievable imaging depth up to 600-
800 μm with 2-photon imaging; and 200 μm 
with 1-photon imaging

 bone thinning can provide sufficient visibility

 access port can allow for additional electrode 
access

microscope objective

transparent glass 
window



Imaging of thick biological tissue

excitation light
Ideal case

biological tissue



What limits imaging depth ? 

● Absorption : light
is absorbed and converted 
into energy by molecules

● Scattering : light is diverted 
by molecules in different 
directions

Realistic case in thick biological 
tissue

excitation light

biological tissue



One photon vs. 2-photon fluorescence : absorption

 commonly used fluorescent dyes 
have excitation spectra in the 400 to 
500 nm range → wavelengths used 
to excite the same dyes with two-
photons tend to be between about 
800 and 1000 nm

 infrared light can penetrate deeper in 
biological tissue due to little 
absorption

 commonly used: titanium-sapphire 
tunable laser of  wavelength 650 nm-
1100 nmone photon

excitation range
two-photon
excitation range



One photon vs. 2-photon fluorescence : scattering

 the amount of light scattered scales 
as 1/λ4 (Raleigh scattering)

 Imaging in the near-infrared 
minimizes both absorption and 
scattering

excitation light

biological tissue



Improved access to deep tissue with GRIN lens

 GRIN lens : glass gradient refractive 
index lens probe (microendoscopes)

 provides optical access to deep (and not 
so deep) structures in particular for one 
photon imaging

 Disadvantage : induces damage to 
more superficial structures (btw. the 
tissue to be imaged and the brain 
surface) as the physical object has to be 
inserted  
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One photon vs. 2-photon fluorescence : resolution

 excitation volume/fluorescence is 
confined to the focal center of the laser 
beam

 both photons must arrive nearly 
simultaneous (< 1 fs)

 fluorescence falls off as ~1/z2, while it 
falls off as 1/z with single photon 
excitation
→ 3D-imaging with out-of-focus 
       background rejection similar to a 
       confocal microscope
 → much higher spatial resolution             
      can be achieved

dichroic
mirror

objective

fluorophore

excitation
volume

1-photon 
excitation

2-photon 
excitation

[z is distance from focal plane]



Parts list for 2-photon in vivo imaging
 Light source: laser producing light pulses on 

the order of femtoseconds (10-15 s)

 Excitation filter: not required since laser 
produces single wavelength

 Scanning mirrors: directs/scans the laser 
beam over the sample 

 Dichroic mirror

 Objective: focuses light on region of interest 

 Sample: structure labeled with fluorophore

 Emission filter: enables to select fluorescent 
photons in a given range.

 Detector: PMT



2-photon imaging : functioning 

 A small excitation volume is excited 
by the laser light – defines 
resolution 

 All fluorescent light is collected from 
the sample (indirect and direct light)

 Scanning mirrors move the laser 
beam across the imaging region – 
sequential acquisition of image 
(typical frame rate 30 Hz)

excited volume
in sample

pixel in reconstructed
image

imaging plane



Parts list for 1-photon in vivo imaging
 Light source: LED producing continuous 

light of a given wavelength

 Excitation filter: not required since LED 
produces single wavelength

 Dichroic mirror

 Objective: focuses light on region of 
interest

 Grin lens: provides access to deep tissue 

 Sample: structure labeled with fluorophore

 Emission filter: enables to select 
fluorescent photons in a given range.

 Detector: CMOS image sensor (fast, 
energy-efficient camera)



1-photon imaging : functioning

 Entire sample is illuminated and imaged at 
once (no scanning of the laser beam)

 Each point in field of view is imaged onto a 
specific point on the sensor surface

 CMOS image sensor collects photons 
during the entire exposure time of an 
image 



Comparison : 1 vs 2-photon imaging

 near-infrared light minimizes both 
absorption and scattering – greater depth 
of imaging

 small excitation volume results in reduced 
phototoxicity and dye bleaching 

 high spatial resolution – no out-of-focus 
light

 easy separation between excitation and 
emission light

2-photon imaging1-photon (epifluorescence) 
imaging

Advantages

 each pixel is sampled during the entire 
imaging duration – more signal photons 
can be collected 

 entire image is sampled simultaneously 
simplifies motion correction  

 full commercially available solutions

 lightweight and portable system, does not 
restrict application and animal behavior 



Comparison : 1 vs 2-photon imaging

 lasers needed are expensive, large, 
complicated and consume a lot of power

 no complete commercially available 
systems

 limited photon counts per pixel and limited 
imaging speed (in particular for voltage 
imaging)

 line-by-line image acquisition can lead to 
distortion due to motion

 requires head-fixation of the animal (but 
see new developments)

2-photon imaging1-photon (epifluorescence) 
imaging

Disadvantages

 poor resolution makes it impossible to 
image neurites or spines 

 insertion of GRIN lens destroys neural 
tissue above the region to be imaged
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Rational behind in vivo experiments

 goal : naturalistic behaviors, where 
one's actions determine sensory 
stimulation  

 initially : in vivo approaches 
focused on sensory perception 
(passive stimulation of single 
sensory modality)

 however : sensorimotor processing 
varies with behavioral state/output

 interactive setting : study 
sensoriomotor interactions with the 
outside world 

Coupling



Feasibility of in vivo imaging experiments

 sensory stimuli : 
- easy to implement : touch                                
  (whisker), vision (static), smell, taste, sound
- difficult : vision (dynamic), equilibrium    
  (vestibular)

 motor output : 
- easy : licking, paw/arm movement, 
  gaze, whisking
- difficult : locomotion 

Coupling



Assure stability btw. imaging system and imaging tissue 

1) Minimize relative movements 
between animal  to be imaged 
and the microscope

 fix the animal head under the 
    microscope  

2) Place (parts of) microscope 
on the head of the animal, i.e., 
microscope moves with the 
animal

  miniaturize imaging system



Most 2-p imaging experiments use head-fixation

[Dombeck et al. Neuron 2007]

 Minimizes relative movements 
between animal – to be imaged 
– and the microscope

 adapter – headplate – is 
implanted on the animal's head 
to allow for solid and repeated 
fixation in the experimental setup

 allows to study sensorimotor 
integration for many 
sensorimotor modalities



'Freely' moving animal solutions

 miniaturized microscope mounted on 
animals head

 feasible for epifluorescence imaging

optical fiber

 flexible optical fiber connects static 
microscope parts (light source/detector) 
and animal-mounted optics 

 allows for 2-photon imaging in 'freely' 
moving animals



Head-mounted wide-filed epifluorescence (1-p imaging)

[Ziv & Ghosh, 
Current Opinion in Neurobiol 
2015]

weight ~ 2g

miniscope



Hippocampal Ca dynamcis in behaving mice




Hippocampal Ca dynamcis in behaving mice

[Ziv & Ghosh, Current Opinion in Neurobiol 2015]

 epifluorescence imaging
of pyramidal cells in CA1 
region of the hippocampus

 cells in this region feature 
place-cells : cell which fire 
when animal enter a 
particular place in 
environment 



Different wide-field (1p) miniscopes available

[status in 2017]



2p-laser scanning fiber-coupled microscope

[Helmchen et al. Neuron 2001]

7.5 cm long, weighs 25 g 

 light source at remote location from the animal

 scanning mirrors and detector in fiberscope on the animal's head

 too heavy and bulky for small animal applications



Summary of miniature 2-photon microscopes

[Helmchen et al. Neuron 2001]

7.5 cm long, weighs 25 g 

as of today, no functioning, commercially-availabe miniature 2-photon microscope exists



Virtual reality (VR) systems : visual VR 

 creating a sensorimotor loop 
between locomotion and visual 
feedback (i.e. optical flow 
linked to movement)

 animal is restrained, animals 
paw movement is recorded 
and controls sensory 
stimulation

 https://www.youtube.com/
watch?v=1DJOTEDBA2c [Thurley & Ayaz, Current Zoology 2017]



Virtual reality (VR) systems : tactile VR

 creating a sensorimotor loop 
between locomotion and 
tactile feedback (i.e. mechanic 
stimulation linked to 
movement)

 animal is restrained, animals 
paw movement is recorded 
and controls rotation of 
whisker wheels 

[Stell unpublished 2019]



Calcium vs. voltage imaging

 membrane potential 
depolarizations induce 
calcium transients

 calcium is a proxy of 
neural activity 

 calcium transients are 
much longer (~100 ms) 
than membrane potential 
depolarizations (~2 ms) 



Calcium vs. voltage imaging

● genetically encoded calcium 
indicators (GECIs) report calcium 
trace 

● Uses nuclear calcium signal as proxy 
for neuronal activity 

● genetically encoded voltage indicators 
(GEVIs, e.g.  QuasAr, ASAP) report 
directly transmembrane voltage

● located in cell membrane 

Calcium imaging Voltage imaging 



Challenges of voltage imaging

 Requires high-speed microscopes due 
to short duration of action potentials 
(~2 ms)

 Photobleaching due to constant 
illumination 

 Requires good membrane trafficking of 
fluorophores

 Requires exceptionally bright 
fluorescence due to fewer fluorescent 
proteins in field of view (volumne vs. 
surface) 
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Ongoing project in the lab : Cerebellum and locomotion

 motor neurons in the spinal cord receive inputs 
from motor cortex and the cerebellum 

 neurons in the cerebellum encode motor 
variables

 role of the cerebellum in motor control unclear



Cerebellar cortex molecular layer interneuron network in vivo

inputoutput

PC ... Purkinje cellMLI ... molecular layer 
           interneuron
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Task to study motor coordination on cellular level

Erasmus Ladder | Noldus

Acquisition of a 
complex motor task
in head-fixed animal



Task to study motor coordination on cellular level

1) acquisition of a 
complex motor 
task

2) adaptation of the 
motor plan to a 
sudden environmental 
change



Experimental methods and setup

MLI ... molecular layer interneurons
PC  ... Purkinje cells

● calcium imaging from 
molecular layer 
interneurons (MLIs)

● lobule IV/V in Vermis

● GCaMP6f is expressed 
through transgenic 
approach : reporter 
mouse GCaMP6f-Tigre x 
promoter mouse PV-Cre 



Mouse walking on treadmill with bars (rungs)

Video




Extraction of paw trajectories with DeepLabCut

[Mathis et al. Nat Neurosci 2018]
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Question: Link btw. calcium activity and locomotion? 

Recording

Calcium imaging data:
• reflecting activity of a local MLI network

Paw trajectories → speed:

• reflecting activity of multiple muscle groups of different 
angles linked to specific joint 

Wheel speed:
• reflecting overall locomotion state involving multiple 

limbs 

50 μm



Investigating neural circuits for orientation



Cells and circuits coding for space



Head-direction neurons in the presubiculum




Presubiculum integrates vestibular and visual inputs



                                    
                                           

                            Calcium imaging in presubiculum




Experiments with miniscope : head-direction neurons



In vivo imaging as tool to study sensorimotor integration 
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